Tìm GTLN, GTNN của biểu thức $P=x\sqrt{1+y}+y\sqrt{1+x}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 16-08-2013, 18:03
Avatar của $N_B^N$
$N_B^N$ $N_B^N$ đang ẩn
Quản Lý Chuyên Mục
Đến từ: Cầu Thị
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 247
Điểm: 46 / 3127
Kinh nghiệm: 88%

Thành viên thứ: 15915
 
Tham gia ngày: Aug 2013
Bài gửi: 140
Đã cảm ơn : 374
Được cảm ơn 64 lần trong 33 bài viết

Lượt xem bài này: 661
Mặc định Tìm GTLN, GTNN của biểu thức $P=x\sqrt{1+y}+y\sqrt{1+x}$



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 17-08-2013, 18:40
Avatar của Nguyễn Duy Hồng
Nguyễn Duy Hồng Nguyễn Duy Hồng đang ẩn
Điều Hành Diễn Đàn
Đến từ: Sóc Sơn - Hà Nội
Nghề nghiệp: Kỹ Sư Xây Dựng
 
Cấp bậc: 35 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 86 / 869
Điểm: 611 / 11986
Kinh nghiệm: 76%

Thành viên thứ: 7332
 
Tham gia ngày: Mar 2013
Bài gửi: 1.835
Đã cảm ơn : 1.971
Được cảm ơn 1.849 lần trong 898 bài viết

Mặc định Re: Tìm GTLN, GTNN của biểu thức $P=x\sqrt{1+y}+y\sqrt{1+x}$

Nguyên văn bởi $N_B^N$ Xem bài viết
Cho $x^2+y^2 =1$. Tìm GTLN, GTNN của biểu thức $P=x\sqrt{1+y}+y\sqrt{1+x}$
HD:
Tìm Max:
Áp dụng BCS ta có:
$P\leq \sqrt{\left(x^{2}+y^{2} \right)\left(2+x+y \right)}=\sqrt{2+x+y}$
$\sqrt{2+x+y}\leq \sqrt{2+\sqrt{2\left(x^{2}+y^{2} \right)}}=\sqrt{2+\sqrt{2}}$
Dấu bằng đặt tại......
Tìm Min:
Hơi dài... ẹc (ai giúp với)
Lúc nào rảnh mình post Min


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 17-08-2013, 21:52
Avatar của $N_B^N$
$N_B^N$ $N_B^N$ đang ẩn
Quản Lý Chuyên Mục
Đến từ: Cầu Thị
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 247
Điểm: 46 / 3127
Kinh nghiệm: 88%

Thành viên thứ: 15915
 
Tham gia ngày: Aug 2013
Bài gửi: 140
Đã cảm ơn : 374
Được cảm ơn 64 lần trong 33 bài viết

Mặc định Re: Tìm GTLN, GTNN của biểu thức $P=x\sqrt{1+y}+y\sqrt{1+x}$

Nguyên văn bởi Nguyễn Duy Hồng Xem bài viết
HD:
Tìm Max:
Áp dụng BCS ta có:
$P\leq \sqrt{\left(x^{2}+y^{2} \right)\left(2+x+y \right)}=\sqrt{2+x+y}$
$\sqrt{2+x+y}\leq \sqrt{2+\sqrt{2\left(x^{2}+y^{2} \right)}}=\sqrt{2+\sqrt{2}}$
Dấu bằng đặt tại......
Tìm Min:
Hơi dài... ẹc (ai giúp với)
Lúc nào rảnh mình post Min
Nếu chỗ này dùng $|P| \le \sqrt{2+\sqrt{2}}$

Khi đó liệu Min P có bằng $-\sqrt{2+\sqrt{2}}$ không ạ! dấu "=" khi đó xét như thế nào cho chuẩn vậy Thầy!


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tìm GTNN biểu thức : $$P=\frac{1}{a^2+b^2}+\frac{1}{b^2+c^2}+\frac{1}{c ^2+a^2}+\frac{6}{a^2+b^2+c^2}$$ duyanh175 Bất đẳng thức - Cực trị 3 24-05-2016 21:25
Tìm GTNN biểu thức : $$P=\frac{a^2-3bc}{b+c}+\frac{b^2-3ca}{c+a}+\frac{3c^2+1}{c}$$ duyanh175 Bất đẳng thức - Cực trị 6 21-05-2016 23:12
Cho các số thực dương $a, b, c$. Tìm GTNN của biểu thức. khanhtoanlihoa Bất đẳng thức - Cực trị 1 16-05-2016 13:10
Tìm GTNN của biểu thức Longlee Bất đẳng thức - Cực trị 1 06-05-2016 11:56
Cho $a,b,c>0$ thỏa mãn $\frac{4a}{b}(1+\frac{2c}{b})+\frac{b}{a}(1+\frac{ c}{a})=6$ Tìm GTNN của biểu thức: $P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab }{c(2a+b)}$ dolaemon Bất đẳng thức - Cực trị 3 05-05-2016 23:15



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
gtln gtnn cua bieu thuc, tim x nguyen de bieu thuc dat gtln nn
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014