TOPIC Định hướng tư duy --> tiếp cận phương trình lượng giác. - Trang 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán: Số phức - Lượng giác giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Phương trình lượng giác

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #5  
Cũ 24-07-2013, 15:56
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13496
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định

Nguyên văn bởi Lưỡi Cưa Xem bài viết
Bài 3. Giải phương trình $$\cos x=\cos^2 \dfrac{3x}{4}$$
Phân tích và hướng dẫn giải:

Nhận thấy hình thức phương trình rất đơn giản với một hàm lượng giác với hai loại góc $x\leftrightarrow \dfrac{3x}{4}$. Thao tác đầu tiên, nghĩ ngay đến công thức hạ bậc.
\[PT\iff \cos x= \dfrac{1+\cos \dfrac{3x}{2}}{2}\]
Bởi hình thức đơn giản của phương trình nên ta không cần đến một thao tác biến đổi phức tạp nào ngoài cách nhìn nhận để lựa chọn công thức thích hợp.
Hai góc $x$ và $\dfrac{3x}{2}$ tuy nó không có mối quan hệ gì trực tiếp, nhưng ta hãy thử tìm mối quan hệ gián tiếp của chúng. Thực vậy, ta nhận thấy $x= 2. \dfrac{x}{2},\ \dfrac{3x}{2}= 3.\dfrac{x}{2}$. Như vậy đã quá rõ ràng để ta biết phải tiếp tục chọn công thức nào trong bài toán. Cụ thể:
$\bullet\ \cos x= 2\cos^2 \dfrac{x}{2}-1;$
$\bullet\ \cos \dfrac{3x}{2}= 4\cos^3 \dfrac{x}{2}-3\cos \dfrac{x}{2};$
Lúc này, phương trình đã cho tương đương với:
\[\begin{aligned}&2\cos^2 \dfrac{x}{2}-1= \dfrac{1+4\cos^3 \dfrac{x}{2}-3\cos \dfrac{x}{2}}{2}\\
\iff &4\cos^3 \dfrac{x}{2}- 4\cos^2 \dfrac{x}{2}-3\cos \dfrac{x}{2}+3=0\end{aligned}\]
Phương trình cuối giải ra được nghiệm
\[\boxed{x= k4\pi ; x= \pm \dfrac{5\pi}{3}+k4\pi ; x= \pm \dfrac{\pi}{3}+ k4\pi ,\ k\in\mathbb{Z}}.\]


Chủ đề được quan tâm nhiều nhất:



HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 5 người đã cảm ơn cho bài viết này
catbuilata (24-07-2013), Lưỡi Cưa (24-07-2013), Mai Tuấn Long (24-07-2013), Hoàng Kim Quý (26-07-2013), Tuấn Anh Eagles (24-07-2013)
  #6  
Cũ 24-07-2013, 16:06
Avatar của catbuilata
catbuilata catbuilata đang ẩn
Cộng Tác Viên
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 82 / 823
Điểm: 534 / 11882
Kinh nghiệm: 92%

Thành viên thứ: 2783
 
Tham gia ngày: Jan 2013
Bài gửi: 1.604
Đã cảm ơn : 885
Được cảm ơn 843 lần trong 530 bài viết

Mặc định

Bài 5. Giải phương trình: $\frac{1}{{\cos \left( {x - \frac{\pi }{2}} \right)}} - \frac{1}{{\sin \left( {\frac{{3\pi }}{2} - x} \right)}} = 4\cos \left( {x - \frac{{5\pi }}{4}} \right)$




Báo cáo bài viết xấu Trả lời với trích dẫn
Có 5 người đã cảm ơn cho bài viết này
hbtoanag (24-07-2013), Lê Đình Mẫn (24-07-2013), Lưỡi Cưa (24-07-2013), Mai Tuấn Long (24-07-2013), Tuấn Anh Eagles (24-07-2013)
  #7  
Cũ 24-07-2013, 16:17
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 651
Điểm: 307 / 9391
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi catbuilata Xem bài viết
Giải phương trình: $\frac{1}{{\cos \left( {x - \frac{\pi }{2}} \right)}} - \frac{1}{{\sin \left( {\frac{{3\pi }}{2} - x} \right)}} = 4\cos \left( {x - \frac{{5\pi }}{4}} \right)$
Đánh giá về hàm: chỉ chứa hàm bậc nhất của $sin$ và $cos$ có hệ số đối xứng

Đánh giá các góc: $x - \dfrac{\pi }{2} ;\dfrac{3\pi }{2} - x$ các góc này biến $sin\rightarrow cos$ biến $cos \rightarrow sin$

góc này$x - \dfrac{5\pi }{4}\rightarrow x-\dfrac{\pi }{4}$ làm xuất hiên $sinx-cosx$

Vậy đây là PT đối xứng của $sin$ và $cos$ ta nghĩ đến đặt: $t=sinx-cosx$ hoặc $t=sinx+cosx$ tùy vào PT là đối xứng của hiệu hay tổng


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
catbuilata (24-07-2013), hbtoanag (24-07-2013), Lê Đình Mẫn (24-07-2013), Tuấn Anh Eagles (24-07-2013)
  #8  
Cũ 24-07-2013, 16:34
Avatar của Lưỡi Cưa
Lưỡi Cưa Lưỡi Cưa đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương
Nghề nghiệp: Giáo viên
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 584
Điểm: 241 / 8534
Kinh nghiệm: 37%

Thành viên thứ: 1972
 
Tham gia ngày: Dec 2012
Bài gửi: 723
Đã cảm ơn : 1.352
Được cảm ơn 1.145 lần trong 465 bài viết

Mặc định

Nguyên văn bởi catbuilata Xem bài viết
Bài 5. Giải phương trình: $\frac{1}{{\cos \left( {x - \frac{\pi }{2}} \right)}} - \frac{1}{{\sin \left( {\frac{{3\pi }}{2} - x} \right)}} = 4\cos \left( {x - \frac{{5\pi }}{4}} \right)$


Bài 5.
Trước hết, dùng công thức cung có liên quan đặc biệt để xử lí mấy chỗ (Cũng giúp chúng ta tìm điều kiện dễ hơn)
$\cos (x-\frac{\pi}{2})=\cos (\frac{\pi}{2}-x)=\sin x$
$\sin (\frac{3\pi}{2}-x)=\sin (\frac{\pi}{2}-x+\pi)=-\sin (\frac{\pi}{2}-x)=-\cos x$
và $\cos (x-\frac{5\pi}{4})=\cos (x-\frac{\pi}{4}-\pi)=\cos (x-\frac{\pi}{4})$
Khi đó, phương trình đã cho viết lại
$$\dfrac{1}{\sin x}+\dfrac{1}{\cos x} =4\cos (x-\dfrac{\pi}{4})$$
Phương trình chứa ẩn ở mẫu ----> đặt điều kiện đã.
Điều kiện: $\sin 2x \neq 0 \Leftrightarrow x\neq \dfrac{k\pi}{2}$. (Cả $\sin x$ và $\cos x$ khác 0)
Biến đổi quy đồng mẫu số, nhưng trước tiên ta nhận thấy
$$VT=\dfrac{\cos x+\sin x}{\sin x \cos x}$$
Hãy xem vế phải của phương trình, tôi nghĩ kiểu này nên dùng công thức cộng cung
$$\cos (x-\dfrac{\pi}{4})=\cos x\cos \dfrac{\pi}{4}+\sin x\sin \dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}} (\cos x +\sin x)$$
Như vậy chúng ta có thừa số chung là $\sin x+\cos x$. Phương trình được viết lại
$$(\sin x+\cos x)(\dfrac{1}{\sin x\cos x}-2\sqrt{2})=0$$
Từ đó, nghiệm của phương trình là
$x=-\dfrac{\pi}{4}+k\pi$, $x=\dfrac{\pi}{8}+k\pi$, $x=\dfrac{3\pi}{8}+k\pi$

Bài 6. Giải phương trình
$$\sin^4 x+\cos^4 x+\sin (3x-\dfrac{\pi}{4})\cos (x-\dfrac{\pi}{4})-\dfrac{3}{2}=0$$


Đừng ngại học hỏi
Bạn sẽ giỏi!


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
catbuilata (24-07-2013), hbtoanag (24-07-2013), Lê Đình Mẫn (24-07-2013), Tuấn Anh Eagles (24-07-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC có AB=2AC...Tìm tọa độ các đỉnh A,B,C. Maruko Chan Hình giải tích phẳng Oxy 1 20-05-2016 20:17
Cho tam giác ABC vuông cân tại A. M(2;2) là trung điểm BC, N là điểm thuộc cạnh AB sao cho AB=4AN, biết phương trình đường CN: 4x+y-4=0. Tìm tọa độ các đỉnh của tam giác biết điểm C nằm trên trục hoàn xuanvy2005 Hình giải tích phẳng Oxy 1 28-04-2016 15:27
Cho tam giác $ABC$, phân giác ngoài góc $B$ ...Tìm toạ độ các đỉnh thangk56btoanti Hình giải tích phẳng Oxy 2 10-04-2016 14:41
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15
Cho tam giác ABC ...Điểm M(-4;1) thuộc cạnh AC.Viết pt đường thẳng AB tn24121997 Hình giải tích phẳng Oxy 5 05-04-2015 22:37



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
&gt, (cotx-1)(1-√2cos4x)=2sin(2x-3pi/2), 127 ptlg trong bo de tuyen sinh, Định, cac bai luong giac goc 6x, các trường hợp cos sin kpi k2pi, cách nhóm nhân tử phương trình lượng giác, cách tư duy phương trình lượng giác, công thức khai triển cos5x đơn giản nhất, cận, căn(25-4x^2)(3sin, cos^2x-9sin^2xcos2x, giai 2cos(6x)-sqrt3cos(2x)-sin(2x)=sqrt3-2cos(4x), giai phuong trinh sau:long2(x 3) long2(x-3)=long27, giai pt (cosx-1)(1-căn 2cos4x)=2sin(2x-3pi/2), giai pt 2sin6x sin2x 4cos^2(2x)-1=0, giai pt sqr3 sin3x 2cos^2x=1-sin2x, giác, giải phương trình cot x -1/sin x 2 sin x=0 k2pi, giải phương trình sinπ\2 -3x= 2x - cosπ\4 k2π, hướng, lam sao hoc tt luong giac day, lượng, nhóm phương trình lượng giác có cung phức tạp, phuong trinh luong giac cos2x 5 =2(2 -cosx)(sinx - cosx), phương, tính các giá trị lượng giác của góc kpi, tiếp, trình
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014