Tìm $m$ để kẻ đến đường tròn hai tiếp tuyến sao cho góc giữa hai tiếp tuyến bằng $60^0$. - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình giải tích phẳng Oxy

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 20-07-2013, 11:24
Avatar của beodat
beodat beodat đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 167
Điểm: 25 / 2330
Kinh nghiệm: 71%

Thành viên thứ: 6445
 
Tham gia ngày: Mar 2013
Bài gửi: 77
Đã cảm ơn : 149
Được cảm ơn 15 lần trong 11 bài viết

Lượt xem bài này: 1612
Mặc định Tìm $m$ để kẻ đến đường tròn hai tiếp tuyến sao cho góc giữa hai tiếp tuyến bằng $60^0$.

Cho đường tròn $(C): x^{2}+y^{2}=1$. Tìm tất cả các giá trị của $m$ để phương trình $y=m$ có đúng 2 điểm phân biệt sao cho từ mỗi điểm đó kẻ được 2 tiếp tuyến đến $(C)$ sao cho góc gữa $2$ tiếp tuyến bằng $60^0$.

PS : Chỉ công thức Toán mới đặt trong dấu đô-la


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Huy Vinh (22-07-2013), Mai Tuấn Long (23-07-2013)
  #2  
Cũ 22-07-2013, 13:08
Avatar của Huy Vinh
Huy Vinh Huy Vinh đang ẩn
Quản Lý Chuyên Mục
Đến từ: TX - Thanh Hóa
Nghề nghiệp: Học Sinh
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 344
Điểm: 83 / 5042
Kinh nghiệm: 78%

Thành viên thứ: 1842
 
Tham gia ngày: Dec 2012
Bài gửi: 250
Đã cảm ơn : 1.073
Được cảm ơn 197 lần trong 91 bài viết

Mặc định

+ Đường tròn $(C)$ có tâm $O(0;0)$ bán kính $R=1$
+ Gọi M là giao của hai tiếp tuyến $\Rightarrow $ $M(0;m)$
A và B là hai tiếp điểm (A;B thuộc (C) )
Góc tạo bởi hai tiếp tuyến bằng $60^{0}$

TH1: $\widehat{BMA} = 60^{0}$
$\Rightarrow \widehat{ AMO} = 30^{0}$
$\Rightarrow AO = \frac{1}{2} OM $
$\Rightarrow ...$ (tự giải tiếp nhé ! )
$\Rightarrow m=...$

TH2: $\widehat{ BMA} = 120^{0}$
$\Rightarrow \widehat{ AMO} = 60^{0}$
$\Rightarrow OM = ... $ (tự giải tiếp)
$\Rightarrow m=...$

----------------------
Ps: Mình không biết gõ góc Tính toán bạn tự giải nhé :)


NGUYỄN HUY VINH


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 23-07-2013, 00:06
Avatar của beodat
beodat beodat đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 167
Điểm: 25 / 2330
Kinh nghiệm: 71%

Thành viên thứ: 6445
 
Tham gia ngày: Mar 2013
Bài gửi: 77
Đã cảm ơn : 149
Được cảm ơn 15 lần trong 11 bài viết

Mặc định

Không đơn giản như vậy đâu bạn :)


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  beodat 
Huy Vinh (23-07-2013)
  #4  
Cũ 23-07-2013, 07:07
Avatar của Huy Vinh
Huy Vinh Huy Vinh đang ẩn
Quản Lý Chuyên Mục
Đến từ: TX - Thanh Hóa
Nghề nghiệp: Học Sinh
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 344
Điểm: 83 / 5042
Kinh nghiệm: 78%

Thành viên thứ: 1842
 
Tham gia ngày: Dec 2012
Bài gửi: 250
Đã cảm ơn : 1.073
Được cảm ơn 197 lần trong 91 bài viết

Mặc định

Nguyên văn bởi beodat Xem bài viết
Không đơn giản như vậy đâu bạn :)
Hướng giải đúng . Chỉ còn việc tính toán nữa thôi mà bạn !


NGUYỄN HUY VINH


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC vuông tại A có B(4;1), I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng qua C vuông góc CI cắt đường tròn ngoại tiếp tam giác IBC tại K(7;7), biết C thuộc đường thẳng d: 3x-y+2=0 Harass Hình giải tích phẳng Oxy 0 28-05-2016 18:32
Cho tam giác $ABC$ không cân nội tiếp đường tròn tâm $I$ với các đường cao $AD,BE$.Biết $D\left(-\frac{1}{5};-\frac{2}{5} \right);E\left(2;2 \right);F(1;0)$ là hình chiếu của $B$ lên đường thẳng $AI$.Tìm toạ đ Đinh Xuân Hùng Hình giải tích phẳng Oxy 0 16-05-2016 11:49
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Hình giải tích phẳng Oxy 0 14-05-2016 00:00
Trong mặt phẳng với hệ độ Oxy cho tam giác ABC có C(-1,-2) ngoại tiếp đường tròn tâm I baolinhkl Hỏi và Giải đáp nhanh các bài Toán 3 11-05-2016 00:15
Cho tam giác ABC ...Điểm M(-4;1) thuộc cạnh AC.Viết pt đường thẳng AB tn24121997 Hình giải tích phẳng Oxy 5 05-04-2015 22:37



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$600$, $m$, đến, để, đường, bằng, cho, góc, giữa, hai, kẻ, sao, tìm, tiếp, tròn, tuyến
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014