Cho $x,y>0$. thỏa $x+y+\sqrt{2x^2 + 2xy + 3y^2}=4$.Tìm GTLN của $x^2y$. - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 10-07-2013, 15:19
Avatar của Haruki
Haruki Haruki đang ẩn
Thành viên Danh dự
Đến từ: Miền đất lạ!
Nghề nghiệp: Chơi
Sở thích: Vui vẻ!
 
Cấp bậc: 8 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 179
Điểm: 28 / 2536
Kinh nghiệm: 18%

Thành viên thứ: 4301
 
Tham gia ngày: Feb 2013
Bài gửi: 85
Đã cảm ơn : 110
Được cảm ơn 108 lần trong 51 bài viết

Lượt xem bài này: 598
Mặc định Cho $x,y>0$. thỏa $x+y+\sqrt{2x^2 + 2xy + 3y^2}=4$.Tìm GTLN của $x^2y$.

Cho $x,y$ là 2 số thực dương thỏa mãn $x+y+\sqrt{2x^2 + 2xy + 3y^2}=4$. Tìm GTLN của $x^2y$.


Chủ đề được quan tâm nhiều nhất:



Chán đời!


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Haruki 
Tuấn Anh Eagles (16-07-2013)
  #2  
Cũ 16-07-2013, 12:49
Avatar của buon qua
buon qua buon qua đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 15
Điểm: 2 / 195
Kinh nghiệm: 60%

Thành viên thứ: 15185
 
Tham gia ngày: Jul 2013
Bài gửi: 7
Đã cảm ơn : 1
Được cảm ơn 14 lần trong 6 bài viết

Mặc định

Từ giả thiết ta suy ra $x^2+2y^2+8x+8y=16.$
Giả sử $x=a,\ y=b$ với $a,b >0.$
Sử dụng bất đẳng thức AM-GM ta có:
$$16+a^2+2b^2=(x^2+a^2)+2(y^2+b^2)+8(x+y) \ge 2(a+4)x+4(b+2)y.$$
Lại sử dụng AM-GM ta có:
$$(a+4)x+(a+4)x+4(b+2)y \ge 3\sqrt[3]{4.(b+2)(a+4)^2.x^2y}.$$
Suy ra
$$x^2y \le \frac{(16+a^2+2b^2)^3}{108(a+4)^2(b+2)}.$$
Với $a,b$ là nghiệm của hệ phương trình:
$$\left\{\begin{matrix} a^2+2b^2+8(a+b)=16\\ a.(a+4)=4b.(b+2)\end{matrix}\right.$$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
A Child (16-07-2013), Mai Tuấn Long (16-07-2013), Tuấn Anh Eagles (16-07-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$x, $x2y$, 2xy, 3y24$, 3y24$tìm, của, cho, gtln, sqrt2x2, thỏa, y&gt0$, y>0$
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014