Tìm m để đường thẳng (d): $y = mx + \dfrac{1}{2}$ cắt đường thẳng của (C) tại 2 điểm thuộc 2 nhánh. - Trang 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số & Giải tích 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Khảo sát hàm số

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #5  
Cũ 25-06-2013, 14:19
Avatar của binhncb
binhncb binhncb đang ẩn
Thành viên Danh dự
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 241
Điểm: 45 / 3626
Kinh nghiệm: 66%

Thành viên thứ: 1015
 
Tham gia ngày: Oct 2012
Bài gửi: 135
Đã cảm ơn : 87
Được cảm ơn 174 lần trong 77 bài viết

Mặc định

Nguyên văn bởi 200dong Xem bài viết
Em mới học, vẫn chưa làm dc.
Thuộc $2$ nhánh của đồ thị thì ta phải có $x_{1}>1$ và $x_{2}<1$.Với $x_{1};x_{2}$ là hoành độ giao điểm của đường thẳng với đồ thị.Khi đó ta được $\left(x_{1}-1 \right)\left(x_{2}-1 \right)<0$
Đến đây em nhân tung ra và sử dụng viet


Chủ đề được quan tâm nhiều nhất:



Còn hơn 1 tháng nữa là đến kì thi đại học.Hãy chiến đầu từng phút từng giây nào !


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  binhncb 
200dong (26-06-2013)
  #6  
Cũ 26-06-2013, 20:32
Avatar của 200dong
200dong 200dong đang ẩn
Thành viên Chính thức
Đến từ: $1/2_{♥}$ of you
Nghề nghiệp: XAD
Sở thích: Dốt toán =))
 
Cấp bậc: 9 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 207
Điểm: 35 / 2831
Kinh nghiệm: 30%

Thành viên thứ: 9288
 
Tham gia ngày: Apr 2013
Bài gửi: 106
Đã cảm ơn : 60
Được cảm ơn 13 lần trong 11 bài viết

Mặc định

Nói em cũng cũng chưa hiểu gì cả, có thể giải hoàn chỉnh ra dc k ạ?

Nếu nói x1,x2 là hoành độ giao điểm của dt với đồ thị thì câu a đã cho biết đường thẳng nào đâu mà lấy giao ạ?


Báo cáo bài viết xấu Trả lời với trích dẫn
  #7  
Cũ 27-06-2013, 01:09
Avatar của tien.vuviet
tien.vuviet tien.vuviet đang ẩn
Quản Lý Diễn Đàn
Nghề nghiệp: Ăn mày
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 545
Điểm: 207 / 8067
Kinh nghiệm: 82%

Thành viên thứ: 1375
 
Tham gia ngày: Nov 2012
Bài gửi: 623
Đã cảm ơn : 88
Được cảm ơn 622 lần trong 330 bài viết

Mặc định

$y = \dfrac{1}{2} - \dfrac{1}{x - 1}$. Ta có TCĐ là $x = 1$. Gọi $A(x_1,\ y_1),\ \ B(x_2,\ y_2)$ lần lượt là 2 điểm thuộc nhánh trái và phải của đồ thị $\Rightarrow x_1 < 1 < x_2$

Đặt $x_1 = 1- a, \ x_2 = 1 + b, \ a, \ b >0 \Rightarrow y_1 = \dfrac{1}{2} + \dfrac{1}{a}, \ y_2 = \dfrac{1}{2} - \dfrac{1}{b}$

$AB^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 = (a + b)^2 + \bigg (\dfrac{1}{a} + \dfrac{1}{b} \bigg )^2 = (a + b)^2 \bigg [ 1 + \bigg (\dfrac{1}{ab} \bigg )^2 \bigg ]$

$\ge 4ab. \dfrac{2}{ab} = 8 \Rightarrow AB \ min = 2\sqrt 2$

Dấu = xảy ra khi chỉ khi $\begin{cases} a = b \\ \dfrac{1}{ab} = 1 \end{cases} \Rightarrow a = b = 1$

Kết luận $A(0,\ \dfrac{3}{2}) ,\ \ B(2, \ -\dfrac{1}{2})$


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
200dong (27-06-2013), Trọng Nhạc (27-06-2013)
  #8  
Cũ 27-06-2013, 13:23
Avatar của tien.vuviet
tien.vuviet tien.vuviet đang ẩn
Quản Lý Diễn Đàn
Nghề nghiệp: Ăn mày
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 545
Điểm: 207 / 8067
Kinh nghiệm: 82%

Thành viên thứ: 1375
 
Tham gia ngày: Nov 2012
Bài gửi: 623
Đã cảm ơn : 88
Được cảm ơn 622 lần trong 330 bài viết

Mặc định

Còn câu b thì không khó chút nào, bạn dùng phương trình hoành độ giao điểm đi, để đường thẳng cắt đồ thị tại 2 điểm phân biệt thuộc 2 nhánh thì phương trình

$\dfrac{x-3}{2x - 2} = mx + \dfrac{1}{2} \Leftrightarrow g(x) = mx^2 - mx + 1 = 0$ phải có 2 nghiệm phân biệt $x_1,\ x_2 \ne 1$ và thỏa mãn $x_1 < 1 < x_2$

Nghĩa là $(x_1 - 1).(x_2 - 1) < 0 \Leftrightarrow x_1 x_2 - (x_1 + x_2) + 1 < 0$

Vậy hệ điều kiện là $\begin{cases} \Delta > 0 \\ g(1) \ne 0 \\ x_1 x_2 - (x_1 + x_2) + 1 < 0 \end{cases}$

Với $x_1 x_2 = \dfrac{1}{m}, \ x_1 + x_2 = 1$


$LOVE (x) \bigg |_{x=e}^{\Omega} =+\infty$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  tien.vuviet 
Trọng Nhạc (27-06-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hộ và nhận xét về bài toán: Cho hình chữ nhật ABCD, AB =2BC. Gọi G là trọng tâm tam giác ACD và F là điểm thuộc cạnh AB sao cho AB=6AF. mh10111988 Hình giải tích phẳng Oxy 0 01-06-2016 18:13
Cho tam giác ABC vuông tại A có B(4;1), I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng qua C vuông góc CI cắt đường tròn ngoại tiếp tam giác IBC tại K(7;7), biết C thuộc đường thẳng d: 3x-y+2=0 Harass Hình giải tích phẳng Oxy 0 28-05-2016 18:32
Cho tam giác ABC có AB=2AC...Tìm tọa độ các đỉnh A,B,C. Maruko Chan Hình giải tích phẳng Oxy 1 20-05-2016 20:17
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Hình giải tích phẳng Oxy 0 14-05-2016 00:00
Cho tam giác ABC vuông cân tại A. M(2;2) là trung điểm BC, N là điểm thuộc cạnh AB sao cho AB=4AN, biết phương trình đường CN: 4x+y-4=0. Tìm tọa độ các đỉnh của tam giác biết điểm C nằm trên trục hoàn xuanvy2005 Hình giải tích phẳng Oxy 1 28-04-2016 15:27



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$y, 2, để, điểm, đường, cắt, của, dfrac12$, mx, nhánh, tìm, tại, thẳng, thuộc
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014