Đề thi tuyển sinh vào lớp 10 THPT chuyên Hà Tĩnh năm 2013-2014 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 9 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Thi vào lớp 10 THPT

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 22-06-2013, 11:42
Avatar của Hồng Sơn-cht
Hồng Sơn-cht Hồng Sơn-cht đang ẩn
Quản Lý Chuyên Mục
Đến từ: Chuyên Hà Tĩnh
Sở thích: ngủ ngày
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 449
Điểm: 138 / 6733
Kinh nghiệm: 96%

Thành viên thứ: 1020
 
Tham gia ngày: Oct 2012
Bài gửi: 416
Đã cảm ơn : 1.041
Được cảm ơn 632 lần trong 286 bài viết

Lượt xem bài này: 2236
Mặc định Đề thi tuyển sinh vào lớp 10 THPT chuyên Hà Tĩnh năm 2013-2014

Câu 1
a. Giải hệ phương trình $\left\{\begin{matrix} x^2+\frac{4}{y^2}=4\\ x-\frac{2}{y}-\frac{4x}{y}=-2 \end{matrix}\right.$

b. Giải phương trình $(3\sqrt{x}-\sqrt{x+8})(4+3\sqrt{x^2+8x})=16(x-1)$



Câu 2.

a. Cho ba số thực $x,y,z$ thỏa mãn $\left\{\begin{matrix} x+y+z=6\\ (x-1)^3+(y-2)^3+(z-3)^3=0 \end{matrix}\right.$

Tính giá trị của biểu thức $F=(x-1)^{2013}+(y-2)^{2013}+(z-3)^{2013}$

b. Cho các số thực dương $x,y$ thỏa mãn $\frac{4}{x^2}+\frac{1}{y^2}=2$.

Chứng minh rằng $x^2-4xy+6y^2+2x\geq 6$



Câu 3. Tìm các số nguyên dương $a,b,c$ thỏa mãn đồng thời các điều kiện $\frac{a-b\sqrt{5}}{b-c\sqrt{5}}$ là số hữu tỉ và $a^2+b^2+c^2$ là số nguyên tố.



Câu 4. Cho tam giác $ABC$ có $AB=AC=a$, góc $\widehat{BAC}=120^o$. Ký hiệu $(A;AB)$ là đường tròn tâm $A$, bán kính $AB$. Các tiếp tuyến của $(A;AB)$ tại $B,C$ cắt nhau tại $D$. Gọi $M$ là một điểm di động trên cung nhỏ $BC$ của đường tròn $(A;AB)$ ($M$ khác $B,C$). Tiếp tuyến tại $M$ của đường tròn $(A;AB)$ cắt $DB,DC$ lần lượt tại $E,F$. Gọi $P,Q$ lần lượt là giao điểm của các đường thẳng $AE,AF$ với đường thẳng $BC$.

a. Chứng minh $ABEQ$ là tứ giác nội tiếp được trong một đường tròn và các đường thẳng $AM,EQ,FP$ đồng quy.

b. Xác định vị trí của $M$ trên cung nhỏ $BC$ của $(A;AB)$ để diện tích tam giác $APQ$ nhỏ nhất. Tính giá trị nhỏ nhất đó theo $a$.



Câu 5. Từ một đa giác đều $15$ đỉnh, ta chọn ra $7$ đỉnh bất kỳ. Chứng minh rằng có $3$ đỉnh trong số các đỉnh đã chọn là $3$ đỉnh của một tam giác cân.


Chủ đề được quan tâm nhiều nhất:



Ngọc không giũa không thành đồ đẹp.
Người không học không thể trưởng thành.



Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Hồng Sơn-cht 
Nắng vàng (22-06-2013)
  #2  
Cũ 22-06-2013, 14:02
Avatar của Lưỡi Cưa
Lưỡi Cưa Lưỡi Cưa đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương
Nghề nghiệp: Giáo viên
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 584
Điểm: 241 / 8530
Kinh nghiệm: 37%

Thành viên thứ: 1972
 
Tham gia ngày: Dec 2012
Bài gửi: 723
Đã cảm ơn : 1.352
Được cảm ơn 1.145 lần trong 465 bài viết

Mặc định

Câu 2.
1. Đặt $a=x-1, b=y-2, c=z-3$. Ta có $a+b+c=0$ và $a^3+b^3+c^3=0$.
Biểu thức $$F=a^{2013}+b^{2013}+c^{2013}$$
Với chú ý $$a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)$$
Do đó chỉ cần xét trường hợp $a+b=0$. Lúc này
$$F=a^{2013}+(-a)^{2013}=0$$
2. Dự đoán $x=2; y=1$.
Thực hiện các đánh giá $$(x-2y)^2\geq 0$$
và $$2y^2+2x=2y^2+x(\dfrac{4}{x^2}+\dfrac{1}{y^2})=2y ^2+\dfrac{4}{x}+\dfrac{x}{y^2} \geq 3\sqrt[3]{2y^2.\dfrac{4}{x}.\dfrac{x}{y^2}}=6$$
Cộg từng vế hai cái trên


Đừng ngại học hỏi
Bạn sẽ giỏi!


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 22-06-2013, 14:22
Avatar của Tiết Khánh Duy
Tiết Khánh Duy Tiết Khánh Duy đang ẩn
Thành viên Danh dự
Đến từ: Tân An-Long An
Nghề nghiệp: Student
Sở thích: Math
 
Cấp bậc: 17 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 421
Điểm: 122 / 5901
Kinh nghiệm: 86%

Thành viên thứ: 5299
 
Tham gia ngày: Mar 2013
Bài gửi: 367
Đã cảm ơn : 283
Được cảm ơn 306 lần trong 163 bài viết

Mặc định

CÂU 1B

$\Leftrightarrow (x-1)(\frac{32+24\sqrt{x^{2}+8x}}{3\sqrt{x}+\sqrt{x+8 }}-16)=0$
$\Leftrightarrow \begin{bmatrix}
x=1 & \\
32+24\sqrt{x}\sqrt{x+8}=48\sqrt{x}+16\sqrt{x+8} &
\end{bmatrix}$
$\Leftrightarrow 32+24\sqrt{x}\sqrt{x+8}-48\sqrt{x}+16\sqrt{x+8}=0$
$\Leftrightarrow (2-3t)(16+8\sqrt{t^{2}+8})=0$
$\Leftrightarrow t=\frac{2}{3}\Rightarrow x=\frac{4}{9}$
Click the image to open in full size.

CÂU 1A:

$\Leftrightarrow \left\{\begin{matrix}
(x-\frac{2}{y})^{2}+4\frac{x}{y}=1 & \\
(x-\frac{2}{y})-4\frac{x}{y}=0 &
\end{matrix}\right.$


Đừng chờ đợi những gì bạn muốn mà hãy đi tìm kiếm chúng.
Đừng để những khó khăn đánh gục bạn, hãy kiên nhẫn rồi bạn sẽ vượt qua.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Tiết Khánh Duy 
Lưỡi Cưa (22-06-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Đề thi thử THPT chuyên Thái Bình Lần 5 Past Present Đề thi THPT Quốc Gia | trườngTHPT 6 14-06-2016 15:47
Tuyển chọn các bài toán hình học phẳng Oxy qua đề thi thử THPT Quốc Gia Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 0 25-05-2016 23:46
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
THPT chuyên Vinh - Lần 3 Past Present Đề thi THPT Quốc Gia | trườngTHPT 15 09-05-2016 23:29



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
Đề, đề thi tuyển sinh vào lớp 10 tỉnh bình dương, chuyên, http://k2pi.net/showthread.php?t=8073, k2pi.net, lớp, loi giai vao10 chuyen ha tinh, tĩnh, tuyển
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014