Chứng minh phương trình sau có đúng một nghiệm:$(\sqrt{x+1})^{2011}-2(\sqrt{x+1})^3=x^3+3x^2+3x+2$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải phương trình Vô tỷ

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 15-06-2013, 18:51
Avatar của suddenly.nb1
suddenly.nb1 suddenly.nb1 đang ẩn
Thành viên Chính thức
Đến từ: Thanh Chương
Nghề nghiệp: Học sinh
 
Cấp bậc: 9 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 218
Điểm: 38 / 3165
Kinh nghiệm: 75%

Thành viên thứ: 2322
 
Tham gia ngày: Dec 2012
Bài gửi: 115
Đã cảm ơn : 183
Được cảm ơn 88 lần trong 54 bài viết

Lượt xem bài này: 634
Mặc định Chứng minh phương trình sau có đúng một nghiệm:$(\sqrt{x+1})^{2011}-2(\sqrt{x+1})^3=x^3+3x^2+3x+2$



LÀM HOẶC KHÔNG. KHÔNG CÓ THỬ!


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  suddenly.nb1 
Lạnh Như Băng (15-06-2013)
  #2  
Cũ 15-06-2013, 20:05
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 651
Điểm: 307 / 9361
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi suddenly.nb1 Xem bài viết
Chứng minh phương trình sau có đúng một nghiêm:
$(\sqrt{x+1})^{2011}-2(\sqrt{x+1})^3=x^3+3x^2+3x+2$
$ĐK:x+1\geq 0\Leftrightarrow x\geq -1$

$PT\Leftrightarrow (\sqrt{x+1})^{2011}-2(\sqrt{x+1})^3=(x+1)^3+1>0$

$\Rightarrow (\sqrt{x+1})^{2011}-2(\sqrt{x+1})^3>0\Rightarrow \sqrt{x+1})^{2008}>2\Rightarrow x+1>1\Rightarrow t=\sqrt[4]{x+1}>1$

$PT\Leftrightarrow \left(t^{2011}-t^{6}-1 \right)\left(t^{2011}+t^{6}+1 \right)=0\Leftrightarrow t^{2011}-t^{6}-1=0$

H/s: $f(t)=t^{2011}-t^{6}-1$ đồng biến trên $[1;+\infty); f(1)=-1<0$

$\Rightarrow \ni t_0>1$ sao cho $f(t_0)=0\Rightarrow PT$ có nghiệm $t=t_0 $và nghiệm này là duy nhất.


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Mai Tuấn Long 
Lạnh Như Băng (15-06-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Chứng minh phương trình mũ có nghiệm thực dương duy nhất Trangsf Hỏi và Giải đáp nhanh các bài Toán 1 26-05-2016 22:34
Giải phương trình: \[2{x^2}\left( {3{x^2} + 1} \right) = \left( {{x^2} + 1} \right)\left( {1 - 3x\sqrt {4{x^2} - 3} } \right)\] dobinh1111 Giải phương trình Vô tỷ 0 18-05-2016 11:37
Giải hệ phương trình chứa ${\sqrt {{x^2} + 4x + 3} + y\left( {1 - \sqrt {x + 3} } \right) = {y^3} + \left( {1 - {y^2}} \right)\sqrt {x + 1} }$ dobinh1111 Giải hệ phương trình 0 18-05-2016 11:35
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
0028-minhphuong, 120112sqrtx, đúng, chứng, chứng minh phương trình có đúng 3 nghiệm, một, nghiệm$sqrtx, phương, trình
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014