Lập phương trình đường phân giác của góc nhọn tạo bởi $d_{1}$, $d_{2}$ và nằm trong mặt phẳng (P).

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Phương pháp tọa độ trong không gian


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 06-06-2013, 13:41
Avatar của Hoàng Kim Quý
Hoàng Kim Quý Hoàng Kim Quý đang ẩn
Thành viên Chính thức
 
Cấp bậc: 6 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 138
Điểm: 19 / 2460
Kinh nghiệm: 55%

Thành viên thứ: 1354
 
Tham gia ngày: Nov 2012
Bài gửi: 59
Đã cảm ơn : 295
Được cảm ơn 63 lần trong 27 bài viết

Lượt xem bài này: 1675
Mặc định Lập phương trình đường phân giác của góc nhọn tạo bởi $d_{1}$, $d_{2}$ và nằm trong mặt phẳng (P).

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng:
$d_{1}:\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{2}$
$d_{2}:\frac{x}{1}=\frac{y+1}{2}=\frac{z-3}{-2}$
Chứng minh rằng $d_{1}$ và $d_{2}$ cùng thuộc mặt phẳng (P). Lập phương trình đường phân giác của góc nhọn tạo bởi $d_{1}$, $d_{2}$ và nằm trong mặt phẳng (P).


wherever the wind blows me to, i'll fly with it...happily...


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
đường, bởi, của, giác, lập, mặt, nằm, nhọn, phân, phẳng, phương, tạo, tim phuong trinh duong phan giac cua goc nhon, trình, trong, viet phuong trinh phan giac cua goc nhon
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên