Phương pháp phân tích thành nhân tử với 2 biến bằng CASIO - Trang 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TÀI LIỆU MÔN TOÁN THPT giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan SÁCH TOÁN THPT giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chuyên đề chọn lọc môn Toán

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #5  
Cũ 25-05-2013, 19:17
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 7915
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 812 lần trong 360 bài viết

Mặc định

Nguyên văn bởi thoheo Xem bài viết
Hì hì, đồ đệ giải thích như sau:
Ví dụ như:
Ta có 1990=y+990
Vì ta thấy hệ số lớn quá nên ta cần đưa hệ số nhỏ đi, thì ta được:
1990=2y-10
P/S:nthoangcute (sư phụ) nói là thêm cái dòng áp dụng thủ thuật 1 đó chỉ là nói cho oai thôi nhỉ
Mình giải thích có khó hiểu chút.Hì, bạn thông cảm nha!
Kiểu như là trước ta thấy y=1000 thì giờ trả lại 1000 = y đó thui

Nói thế cho dễ hiểu !


Chủ đề được quan tâm nhiều nhất:



Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
huynhminhman96 (23-06-2013), maitung (03-06-2013), Nguyễn Duy Hồng (08-06-2013), nguyenxuanthai (25-05-2013)
  #6  
Cũ 08-06-2013, 14:13
Avatar của Nguyễn Duy Hồng
Nguyễn Duy Hồng Nguyễn Duy Hồng đang ẩn
Điều Hành Diễn Đàn
Đến từ: Sóc Sơn - Hà Nội
Nghề nghiệp: Kỹ Sư Xây Dựng
 
Cấp bậc: 35 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 86 / 869
Điểm: 611 / 12010
Kinh nghiệm: 76%

Thành viên thứ: 7332
 
Tham gia ngày: Mar 2013
Bài gửi: 1.835
Đã cảm ơn : 1.971
Được cảm ơn 1.849 lần trong 898 bài viết

Mặc định

Nguyên văn bởi Tống Giang Xem bài viết
Kiểu như là trước ta thấy y=1000 thì giờ trả lại 1000 = y đó thui

Nói thế cho dễ hiểu !
Hic hay quá, đúng là một công cụ hữu ích trong giải phương trình, hệ phương trình, phân tích thành nhân tử và định hướng nhân liên hợp, thao nào mọi người tìm nghiệm giỏi vây


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nguyễn Duy Hồng 
hoangphilongpro (19-05-2014)
  #7  
Cũ 08-06-2013, 15:40
Avatar của Tiết Khánh Duy
Tiết Khánh Duy Tiết Khánh Duy đang ẩn
Thành viên Danh dự
Đến từ: Tân An-Long An
Nghề nghiệp: Student
Sở thích: Math
 
Cấp bậc: 17 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 421
Điểm: 122 / 5909
Kinh nghiệm: 86%

Thành viên thứ: 5299
 
Tham gia ngày: Mar 2013
Bài gửi: 367
Đã cảm ơn : 283
Được cảm ơn 306 lần trong 163 bài viết

Mặc định

Nguyên văn bởi nthoangcute Xem bài viết
Sau đây là một thủ thuật CASIO do mình (Bùi Thế Việt) nghĩ ra, và có thể bạn cũng nghĩ ra được nó nếu bạn làm nhiều Phương Trình, Hệ Phương Trình, ...
Lưu ý: Thủ thuật này chỉ áp dụng cho biểu thức 2 ẩn bậc không quá cao (giới hạn bậc 4) cho một ẩn ...
Ví dụ như: $x^3y^3+10x^2-20xy^3+1$ vẫn nằm trong phạm vi của phương pháp này ... Do đó ứng dụng thực tiễn của phương pháp này là khá lớn, thuận tiện cho việc giải Phương trình và Hệ phương trình.
Yêu cầu: Đọc qua Thủ Thuật 1 :CÁC THỦ THUẬT CASIO
Ý tưởng: Nhận xét sơ bộ một biểu thức cần phân tích, xem bậc cái nào cao nhất, cho nó bằng $1000$ rồi phân tích
_______________________________________

Ví Dụ 1: $A=x^2+xy-2y^2+3x+36y-130$
Bước làm:
Bước 1: Nhìn thấy bậc của $x$ và $y$ đều bằng $2$ nên mình chọn cái nào cũng được
Bước 2: Cho $y=1000$, ta được $A=x^2+1003x-1964130$
Bước 3: Phân tích nhân tử nó: $A=(x+1990)(x-987)$
Bước 4: Áp dụng thủ thuật 1, ta được: $1990=2y-10$ và $-987=-y+13$
Bước 5: Thế vào ta được $A=(x+2y-10)(x-y+13)$
Dễ không nào ???

Ví Dụ 2: $B=6x^2y-13xy^2+2y^3-18x^2+10xy-3y^2+87x-14y+15$
Bước 1: Bậc của $x$ nhỏ hơn
Bước 2: Cho $y=1000$, ta được $B=5982\,{x}^{2}-12989913\,x+1996986015$
Bước 3: Phân tích nhân tử: $B=2991\, \left( 2\,x-333 \right) \left( x-2005 \right) $
Bước 4: Có $2991=3y-9, 333=\frac{999}{3}=\frac{y-1}{3},2005=2y+5$
Bước 5: Ta được: $B=(3y-9)(2x-\frac{y-1}{3})(x-2y-5)=(y-3)(x-2y-5)(6x-y+1)$
OK?

Ví Dụ 3: $C={x}^{3}-3\,x{y}^{2}-2\,{y}^{3}-7\,{x}^{2}+10\,xy+17\,{y}^{2}+8\,x-40\,y+16$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$, ta được $C={x}^{3}-7\,{x}^{2}-2989992\,x-1983039984$
Bước 3: Phân tích: $C=(x-1999)(x+996)^2$
Bước 4: Thế $1999=2y-1$ và $996=y-4$
Bước 5: $C=(x-2y+1)(x+y-4)^2$

Ví Dụ 4: $D=2\,{x}^{2}{y}^{2}+{x}^{3}+2\,{y}^{3}+4\,{x}^{2} +xy+6\,{y}^{2}+3\,x+4\,y+12$
Bước 1: Bậc như nhau
Bước 2: Cho $y=1000$ ta được $D={x}^{3}+2000004\,{x}^{2}+1003\,x+2006004012$
Bước 3: Phân tích: $D=\left( x+2000004 \right) \left( {x}^{2}+1003 \right) $
Bước 4: Thế $2000004=2y^2+4$ và $1003=y+3$
Bước 5: $D=(x^2+y+3)(2y^2+x+4)$

Ví Dụ 5: $E={x}^{3}y+2\,{x}^{2}{y}^{2}+6\,{x}^{3}+11\,{x}^{ 2}y-x{y}^{2}-6\,{x}^{2}-7\,xy-{y}^{2}-6\,x-5\,y+6$
Bước 1: Bậc của $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được $E=1998999\,{y}^{2}+1010992995\,y+5993994006$
Bước 3: Phân tích: $E=2997\, \left( 667\,y+333333 \right) \left( y+6 \right)$
Bước 4: "Ảo hóa" nhân tử: $E=999(2001y+999999)(y+6)$
Bước 5: Thế $999=x-1,2001=2x+1,999999=x^2-1$
Bước 6: $E=(x-1)((2x+1)y+x^2-1)(y+6)=(x-1)(y+6)(x^2+2xy+y-1)$

Ví Dụ 6: $F=6\,{x}^{4}y+12\,{x}^{3}{y}^{2}+5\,{x}^{3}y-5\,{x}^{2}{y}^{2}+6\,x{y}^{3}+{x}^{3}+7\,{x}^{2}y+ 4\,x{y}^{2}-3\,{y}^{3}-2\,{x}^{2}-8\,xy+3\,{y}^{2}-2\,x+3\,y-3$
Bước 1: Bậc $y$ nhỏ hơn
Bước 2: Cho $x=1000$ ta được: $$F=5997\,{y}^{3}+11995004003\,{y}^{2}+60050069920 03\,y+997997997$$
Bước 3: Phân tích $F=\left( 1999\,y+1001001 \right) \left( 3\,{y}^{2}+5999000\,y+997\right) $
Bước 4: Thế $1999=2x-1;1001001=x^2+x+1;5999000=6x^2-x,997=x-3$
Bước 5: Ta được $$F=( (2x-1) y + x ^ 2 + x + 1) ( 3 y^2+( 6 x^2-x) y+x - 3 )\\=\left( {x}^{2}+2\,xy+x-y+1 \right) \left( 6\,{x}^{2}y-xy+3\,{y}^{2}+x-3 \right)$$

______________________________
Tạm ổn rồi, ai không hiểu gì thì cứ hỏi

______________________________
Nguồn: nthoangcute
Có cách nào phân tích thành nhân tử của biểu thức bậc ba và biểu thức bật bốn một ẩn không vậy.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


Đừng chờ đợi những gì bạn muốn mà hãy đi tìm kiếm chúng.
Đừng để những khó khăn đánh gục bạn, hãy kiên nhẫn rồi bạn sẽ vượt qua.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #8  
Cũ 23-06-2013, 21:24
Avatar của huynhminhman96
huynhminhman96 huynhminhman96 đang ẩn
Thành viên Chính thức
Đến từ: Đắk Nông
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 2
Điểm: 1 / 39
Kinh nghiệm: 10%

Thành viên thứ: 1701
 
Tham gia ngày: Dec 2012
Bài gửi: 3
Đã cảm ơn : 22
Đã được cảm ơn 1 lần trong 1 bài viết

Mặc định

Mình thắc mắc tại sao bạn lại cho y=1000 để số lớn bạn lấy 5 hay 10 thì sao?


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  huynhminhman96 
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15
Giải bài toán Hình Học Không Gian bằng phương pháp tọa độ hóa Ẩn Số [Tài liệu] Hình học Không Gian 1 31-05-2015 22:57
[Oxy] Cho hình thang ABCD vuông tại A và D ...Viết phương trình đường thẳng AD biết AD không song song với các trục tọa độ loanphuongtit Hình giải tích phẳng Oxy 4 13-04-2015 17:38



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
bai viet ccua bui thế việt trên k2pi.net, bằng, biến, cac cach phan tich da thuc 2 ẩn thanh nhan tu nhanh nhat, cach phan tich da thuc thanh nhan tu 2 bien, cach phan tich thanh tich cua pt 2 an trong hpt, cch tm nhn t, cacj phan tich thanh nhan tu, casio, casio bieu thuc hai an thanh tich, các bươc phân tich thành nhân tư, cách chia đa thức 2 ẩn bằng casio, cách làm hệ pt bằng cách đặt y1000, cách phân tích thành nhân tử phương trình 2 ẩn, chia đa thức 2 biến bằng casio, chia đa thức cho đa thức 2 biến bằng casio k2pi, chia đa thức cho đa thức hai biến bằng casio, chia đa thức hai biến bằng casio, chia da thuc hai bien casio, chuyên đề phương trình casio, da thuc, dùng casio phân tích nhân tử, dpf phan tich da thuc thanh nhan tu bang casio, giai he phuong trinh, giải hệ phương trình cho y=1000, he phuong trinh, http://k2pi.net.vn/showthread.php?t=7116, http://k2pi.net/showthread.php?t=7116, k2pi.net, khải triển đa thức 2 ẩn bằng casio active, nhan tu ca si o, nhân, nhân 2 biến, nhân tử casio, nthoangcute phu, phan tich da thuc thanh nhan tu 2 bien nhanh nhat/, phan tich nhan tu 2 bien tren casio, phan tich nhan tu bang casio, phan tich thanh nhan tu, phan tich thanh nhan tu doi voi x y de giai he phuong trinh, phan tich thanh nhan tu trong giai he phuong trinh, phan tich thanh tich pt 2 an, pháp, phân, phân tích đa thức 2 ẩn thành nhân tử, phân tích đa thức thành nhân tử 2 biến, phân tích nhân tử hai biến, phân tích phương trình 2 ẩn thành nhân tử, phân tich đa thức thành nhân tử giải hpt, phuong phap phan tich nhan tu he phuong trinh bui the viet, phuong phap phan tich phuong trinh thanh nhan tu, phuong phap phan tich thanh nhan tu he phuong trinh bac cao, phuong phap phan tich thanh nhan tu trong he phuong trinh, phương, phương pháp nhân tử casio, phương pháp phân tích bùi thế, sch casio casio bi th, sd casio phá da thuc 2 bien, sử dụng casio phân tích thành nhân tử, tài liệu thủ thuật casio bùi thế việt, tích, thành, thủ thuật phân tích đa thức thành nhân tử, thu thuat casio nthoangcute pdf, thuat toan casio phan tich da thuc thanh nhan tu, thủ thuật casio k2pi, tim nhan tử chung 2 ẩn tren casio, với, www.de toan he phuong trinh casio
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014