Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng:$$\frac{2ab}{c+ab}+\frac{3bc}{a+bc}+\frac{2 ca}{b+ca}\ge \frac{5}{3}.$$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 26-04-2013, 20:43
Avatar của Hồng Sơn-cht
Hồng Sơn-cht Hồng Sơn-cht đang ẩn
Quản Lý Chuyên Mục
Đến từ: Chuyên Hà Tĩnh
Sở thích: ngủ ngày
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 449
Điểm: 138 / 6720
Kinh nghiệm: 96%

Thành viên thứ: 1020
 
Tham gia ngày: Oct 2012
Bài gửi: 416
Đã cảm ơn : 1.041
Được cảm ơn 632 lần trong 286 bài viết

Lượt xem bài này: 1212
Mặc định Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng:$$\frac{2ab}{c+ab}+\frac{3bc}{a+bc}+\frac{2 ca}{b+ca}\ge \frac{5}{3}.$$

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng:$$\frac{2ab}{c+ab}+\frac{3bc}{a+bc}+\frac{2 ca}{b+ca}\ge \frac{5}{3}.$$


Chủ đề được quan tâm nhiều nhất:



Ngọc không giũa không thành đồ đẹp.
Người không học không thể trưởng thành.



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
belon_vip (27-04-2013), Tuấn Anh Eagles (28-04-2013)
  #2  
Cũ 28-04-2013, 18:42
Avatar của Tuấn Anh Eagles
Tuấn Anh Eagles Tuấn Anh Eagles đang ẩn
Ma Băng Long
Sở thích: NGỦ
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 556
Điểm: 216 / 7806
Kinh nghiệm: 25%

Thành viên thứ: 4712
 
Tham gia ngày: Feb 2013
Bài gửi: 650
Đã cảm ơn : 1.858
Được cảm ơn 985 lần trong 423 bài viết

Mặc định

Nguyên văn bởi sonvipthoiroi Xem bài viết
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng:$$P=\frac{2ab}{c+ab}+\frac{3bc}{a+bc}+\frac {2ca}{b+ca}\ge \frac{5}{3}.$$
Đặt: $x=\frac{a}{b+c}; y=\frac{b}{c+a}; z=\frac{c}{a+b} \Rightarrow xy+yz+zx+2xyz=1$.
BDT được viết lại như sau:
$P=2xy+3yz+2zx \ge \frac{5}{3}$
$\Leftrightarrow yz\left(4x-1\right) \le \frac{1}{3}$
Từ giả thiết:
$1 \ge 2x\sqrt{yz}+yz+ 2xyz$
$\Rightarrow 2x \le \frac{1-yz}{yz+\sqrt{yz}}$
Đặt $t=\sqrt{yz}$
Suy ra:
$ BDT \Leftrightarrow (t+1)(3t-1)^2 \ge 0$ (luôn đúng)

BDT đã được chứng minh!



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Hồng Sơn-cht (28-04-2013), Lạnh Như Băng (28-04-2013)
  #3  
Cũ 29-04-2013, 12:32
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 7889
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 812 lần trong 360 bài viết

Mặc định

Nguyên văn bởi ramanujan Xem bài viết
Đặt: $x=\frac{a}{b+c}; y=\frac{b}{c+a}; z=\frac{c}{a+b} \Rightarrow xy+yz+zx+2xyz=1$.
BDT được viết lại như sau:
$P=2xy+3yz+2zx \ge \frac{5}{3}$
$\Leftrightarrow yz\left(4x-1\right) \le \frac{1}{3}$
Từ giả thiết:
$1 \ge 2x\sqrt{yz}+yz+ 2xyz$
$\Rightarrow 2x \le \frac{1-yz}{yz+\sqrt{yz}}$
Đặt $t=\sqrt{yz}$
Suy ra:
$ BDT \Leftrightarrow (t+1)(3t-1)^2 \ge 0$ (luôn đúng)

BDT đã được chứng minh!
Nghĩ sao mà lại đổi biến như vậy thế A

Kinh nghiệm hay kĩ thuật gì vậy !


Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 29-04-2013, 15:26
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13464
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định

Nguyên văn bởi tonggianghg Xem bài viết
Nghĩ sao mà lại đổi biến như vậy thế A

Kinh nghiệm hay kĩ thuật gì vậy !
Bởi vì $\dfrac{ab}{c+ab}= \dfrac{ab}{c(a+b+c)+ab}= \dfrac{a}{b+c}\cdot \dfrac{b}{c+a}.$
Tương tự cho hai biểu thức còn lại.


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
$\color{brown}{\textbf{Love cat}}$ (02-10-2014), Lạnh Như Băng (29-04-2013), Tuấn Anh Eagles (01-05-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41
Chứng minh rằng: $\sqrt{a+\frac{(b-c)^{2}}{4}}+\sqrt{b+\frac{(c-a)^{2}}{4}}+\sqrt{c+\frac{(a-b)^{2}}{4}}\leq 2$ Dsfaster134 Bất đẳng thức - Cực trị 4 23-02-2015 18:40



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
2ab/c ab 3bc/a bc 2ca/b ca >= 5/3, chứng, dương, frac2, frac2cab, frac3bca, frac53$$, rằng$$frac2abc, thỏa, thực
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014