Chứng minh bất đẳng thức : $$\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}} \geq \sqrt{3}$$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 19-04-2013, 12:15
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 9246
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 813 lần trong 360 bài viết

Lượt xem bài này: 1177
Mặc định Chứng minh bất đẳng thức : $$\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}} \geq \sqrt{3}$$

Chứng minh bất đẳng thức :

$$\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}} \geq \sqrt{3}$$

Trong đó $a,b,c là$ các số thực dương sao cho các căn tồn tại


Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 19-04-2013, 13:55
Avatar của hbtoanag
hbtoanag hbtoanag đang ẩn
Cộng Tác Viên
Đến từ: Long Kiến, An Giang
Nghề nghiệp: Giáo viên
 
Cấp bậc: 16 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 376
Điểm: 98 / 6410
Kinh nghiệm: 6%

Thành viên thứ: 2166
 
Tham gia ngày: Dec 2012
Bài gửi: 295
Đã cảm ơn : 649
Được cảm ơn 811 lần trong 261 bài viết

Mặc định

Nguyên văn bởi tonggianghg Xem bài viết
Chứng minh bất đẳng thức :

$$\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}} \geq \sqrt{3}$$

Trong đó $a,b,c là$ các số thực dương sao cho các căn tồn tại
Ta có \[\sum{\frac{a}{\sqrt{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}}=\sum{\frac{\sqrt{3}{{a}^{2}}}{\sqrt{3{ {a}^{2}}(2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}})}}\ge \sum{\frac{\sqrt{3}{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}+ {{c}^{2}}}=\sqrt{3}}}}\].


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hbtoanag 
Tuấn Anh Eagles (24-04-2013)
  #3  
Cũ 24-04-2013, 11:05
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 9246
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 813 lần trong 360 bài viết

Mặc định

Nguyên văn bởi hbtoanag Xem bài viết
Ta có \[\sum{\frac{a}{\sqrt{2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}}}}=\sum{\frac{\sqrt{3}{{a}^{2}}}{\sqrt{3{ {a}^{2}}(2{{b}^{2}}+2{{c}^{2}}-{{a}^{2}})}}\ge \sum{\frac{\sqrt{3}{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}+ {{c}^{2}}}=\sqrt{3}}}}\].
Cách khác :

Đặt $$A = \frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}} $$

$$B = a(2b^2+2c^2-a^2) +b(2c^2+2a^2-b^2) +c(2a^2+2b^2-c^2) $$

Áp dụng BDT Holder ta có :

$$A.A.B \geq (a+b+c)^3 $$

Bài toán quy về việc Chứng minh :

$$(a+b+c)^3 \geq 3B$$

$$\Leftrightarrow a^3+b^3+c^3 +3(a+b)(b+c)(c+a) \geq 3[ 2\sum ab(a+b) - (a^3+b^3+c^3) ]$$

$$\Leftrightarrow 4(a^3+b^3+c^3) +6abc \geq 3 \sum ab(a+b)$$

Mà theo BDT Schur và AM-GM ta có :

$$2(a^3+b^3+c^3) + 6abc \geq 2 \sum ab(a+b)$$

$$2(a^3+b^3+c^3) \geq ab(a+b) +bc(b+c) +ca(c+a)$$

Cộng vế với vế 2 BDT trên ta có dpcm !


Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lạnh Như Băng 
Tuấn Anh Eagles (24-04-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$$fracasqrt2b2, 2a2b2, 2b2c2, 2c2a2, đẳng, bất, chứng, chứng minh rằng : (2a b c)^2/2a^2 (b c)^2, fracbsqrt2c2, fraccsqrt2a2, sqrt3$$, thức
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên