Giải hệ : $\left\{\begin{matrix} x^2+y^2=2x^2y^2 & & \\ x+y+1=3x^2 & & \end{matrix}\right. $ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 05-04-2013, 19:51
Avatar của Sv_ĐhY_013
Sv_ĐhY_013 Sv_ĐhY_013 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 160
Điểm: 24 / 2257
Kinh nghiệm: 40%

Thành viên thứ: 4579
 
Tham gia ngày: Feb 2013
Bài gửi: 72
Đã cảm ơn : 96
Được cảm ơn 119 lần trong 50 bài viết

Lượt xem bài này: 933
Mặc định Giải hệ : $\left\{\begin{matrix} x^2+y^2=2x^2y^2 & & \\ x+y+1=3x^2 & & \end{matrix}\right. $

Giải hệ phương trình sau trên tập số thực:
$\left\{\begin{matrix}
x^2+y^2=2x^2y^2 & & \\
x+y+1=3x^2 & &
\end{matrix}\right.
$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Hồng Sơn (05-04-2013), Huy Vinh (22-07-2013)
  #2  
Cũ 22-07-2013, 14:01
Avatar của Huy Vinh
Huy Vinh Huy Vinh đang ẩn
Quản Lý Chuyên Mục
Đến từ: TX - Thanh Hóa
Nghề nghiệp: Học Sinh
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 344
Điểm: 83 / 5047
Kinh nghiệm: 78%

Thành viên thứ: 1842
 
Tham gia ngày: Dec 2012
Bài gửi: 250
Đã cảm ơn : 1.073
Được cảm ơn 197 lần trong 91 bài viết

Mặc định

Do $(0,0)$ không phải là một nghiệm của hệ:
$x^2+y^2=2x^2y^2\Leftrightarrow \frac{1}{x^2}+\frac{1}{y^2}=2$
Mặt khác ta có
$\frac{1}{x^2}+\frac{1}{y^2}\ge \frac{2}{xy}$ (*)
Giả sử $xy >0$
$\Rightarrow xy \ge 1$
Ta có:
$x+y+1=3x^2$
$\Leftrightarrow y=3x^2-x-1$
$\Leftrightarrow xy=3x^3-x^2-x$ (2)
Từ (1)(2) ta có
$3x^3-x^2-x\ge1$
$\Leftrightarrow (x-1)[(x-1)^2+x^2]\ge 0$
$\Rightarrow x\ge 1$
Mặt khác cũng từ
$x+y+1=3x^2$
$\Rightarrow y-1=(x-1)(3x+2)$
$\Rightarrow y \ge 1$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}\le 2$
Dấu đẳng thức xảy ra khi $x=y=1$
Hệ phương trình đã cho có 1 nghiệm là $(1,1)$
Trường hợp $xy <0$ thì từ (*) $\Rightarrow xy \le 1$

Làm tương tự, nhưng trường hợp này vô nghiệm @@

Vậy hệ phương trình đã cho có nghiệm duy nhất $(1,1)$


NGUYỄN HUY VINH


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
cuclac (06-08-2013), Mạnh (22-07-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hệ phương trình: $\left\{\begin{matrix} \frac{{{x}^{4}}+{{x}^{3}}-4y}{x+1}=\sqrt{5{{x}^{2}}+6y+6} \\ {{x}^{3}}-{{x}^{2}}-{{y}^{2}}-2{{x}^{2}}y+2xy+{{y}^{2}}x=0 \end{matrix}\right.$ catbuilata Giải hệ phương trình 3 24-07-2016 13:46
Giải hệ phương trình $\left\{\begin{matrix} 4\sqrt{1+2x^{2}y}-1=3x+2\sqrt{1-2x^{2}y}+\sqrt{1-x^{2}}\\ 2x^{3}y-x^{2}=\sqrt{x^{4}+x^{2}}-2x^{3}y\sqrt{4y^{2}+1} \end{matrix}\right.$ youngahkim Giải hệ phương trình 1 05-06-2016 01:35
$\left\{\begin{matrix} x^3 - 3x^2 + 8xy = 4y^2 + 8y + 6 & & \\ 2(x - y - 1) = \sqrt{y^3 + (x-4)^2 + 2} & & \end{matrix}\right. $ Harass Giải hệ phương trình 0 02-06-2016 23:43
Giải hệ phương trình $\left\{\begin{matrix} \sqrt{x^{2}+4}+\sqrt{x^{2}-2xy+y^{2}}+\sqrt{y^{2}-6y+10}=5\\ log_{3}8xyz^{3}+(log_{3}\frac{3x^{2}z}{y})^{2}=10l og_{9}z^{2} \end{matrix}\right.$ youngahkim Giải hệ phương trình 0 26-04-2016 19:23
Giải hệ phương trình $\left\{\begin{matrix} 4x^{3} -12x^{2}+15x=(y+1)\sqrt{2y-1}+7 \\ 6(x-2)y-x+26=6\sqrt[3]{16x+24y-28} \end{matrix}\right.$ Maruko Chan Giải hệ phương trình 0 23-04-2016 22:59



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$, $leftbeginmatrix, 13x2, endmatrixright, giải, hệ, x2, y22x2y2
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014