Câu 4 - Thể tích. Thử sức THTT tháng 3 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học Không Gian

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 15-03-2013, 16:59
Avatar của Lưỡi Cưa
Lưỡi Cưa Lưỡi Cưa đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương
Nghề nghiệp: Giáo viên
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 584
Điểm: 241 / 8505
Kinh nghiệm: 37%

Thành viên thứ: 1972
 
Tham gia ngày: Dec 2012
Bài gửi: 723
Đã cảm ơn : 1.352
Được cảm ơn 1.145 lần trong 465 bài viết

Lượt xem bài này: 896
Mặc định Câu 4 - Thể tích. Thử sức THTT tháng 3

Câu IV (1,0 điểm) Cho hình lăng trụ đứng $ABC.A_{1}B_{1}C_{1}$ có $AB = a, AC = 2a, AA1=2a\sqrt{5}$ và $\hat{BAC}=120^{0}$. Gọi K, I lần lượt là trung điểm cạnh $CC_{1}, BB_{1}$. Tính thể tích khối chóp $A.A_{1}BK$ và khoảng cách từ điểm $I$ đến mặt phẳng $(A_{1}BK)$.


Chủ đề được quan tâm nhiều nhất:



Đừng ngại học hỏi
Bạn sẽ giỏi!


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 15-03-2013, 21:02
Avatar của hbtoanag
hbtoanag hbtoanag đang ẩn
Cộng Tác Viên
Đến từ: Long Kiến, An Giang
Nghề nghiệp: Giáo viên
 
Cấp bậc: 16 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 376
Điểm: 98 / 5461
Kinh nghiệm: 6%

Thành viên thứ: 2166
 
Tham gia ngày: Dec 2012
Bài gửi: 295
Đã cảm ơn : 649
Được cảm ơn 810 lần trong 261 bài viết

Mặc định

Nguyên văn bởi Lưỡi Cưa Xem bài viết
Câu IV (1,0 điểm) Cho hình lăng trụ đứng $ABC.A_{1}B_{1}C_{1}$ có $AB = a, AC = 2a, AA1=2a\sqrt{5}$ và $\hat{BAC}=120^{0}$. Gọi K, I lần lượt là trung điểm cạnh $CC_{1}, BB_{1}$. Tính thể tích khối chóp $A.A_{1}BK$ và khoảng cách từ điểm $I$ đến mặt phẳng $(A_{1}BK)$.
Click the image to open in full size.


Hạ $BH\bot AC$ thì $BH\bot (A{{A}_{1}}K)$.

Ta có $BC=\sqrt{A{{B}^{2}}+A{{C}^{2}}-2AB.AC.\cos {{120}^{0}}}=a\sqrt{6}$.

Do đó $BH=\frac{2{{S}_{ABC}}}{AC}=\frac{AB.AC.\sin {{120}^{0}}}{AC}=a\frac{\sqrt{3}}{2}$.

Diện tích $\Delta A{{A}_{1}}K$ là ${{S}_{A{{A}_{1}}K}}=\frac{1}{2}.AC.A{{A}_{1}}=2{{ a}^{2}} \sqrt{5}$.

Do đó ${{V}_{A{{A}_{1}}BK}}=\frac{1}{3}.BH.{{S}_{A{{A}_{ 1}}K}}=\frac{1}{3}.a\frac{\sqrt{3}}{2}.2{{a}^{2}} \sqrt{5}=\frac{{{a}^{3}}\sqrt{15}}{3}$.

Mặt khác hoàn toàn tính được ${{S}_{{{A}_{1}}BK}}$ theo Hê rông.

Từ đó tính được $d(I,({{A}_{1}}BK))=\frac{1}{2}d({{B}_{1}},({{A}_{ 1}}BK))=\frac{1}{2}d(A,({{A}_{1}}BK))=\frac{1}{2}. \frac{3{{V}_{A{{A}_{1}}BK}}}{{{S}_{{{A}_{1}}BK}}}$ .


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hbtoanag 
FOR U (15-03-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Phương trình vô tỷ đưa về dạng Tích ylaphong82 [Tài liệu] Phương trình-BPT vô tỷ 1 28-05-2016 12:52
Tính tích phân sau :$$I = \int\limits_{\frac{{ - \pi }}{4}}^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x(1 + {e^{ - 3x}})}}dx} $$ hoangphilongpro Nguyên hàm - Tích phân - Ứ.D 4 27-05-2016 22:17
Tích phân Huyền Đàm Hỏi và Giải đáp nhanh các bài Toán 0 18-05-2016 21:23
Ép tích giải phương trình vô tỷ bản Full Tai lieu [Tài liệu] Phương trình-BPT vô tỷ 0 03-05-2016 17:09
Phát hiện và giải quyết vấn đề trong bài toán hình giải tích phẳng từ những mối quan hệ ba điểm Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 5 26-03-2016 09:30



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
3, 4, câu, sức, tích, tháng, thử, thể, thtt
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014