Chứng minh: \[x^3+y^3+z^3+xyz \geq 4\]

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 09-03-2013, 18:41
Avatar của hthtb22
hthtb22 hthtb22 đang ẩn
$\mathscr{H.T.H}$
Đến từ: THPT Chuyên THái Bình
Nghề nghiệp: H/S
Sở thích: Toán
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 313
Điểm: 70 / 5315
Kinh nghiệm: 52%

Thành viên thứ: 2345
 
Tham gia ngày: Dec 2012
Bài gửi: 210
Đã cảm ơn : 138
Được cảm ơn 452 lần trong 150 bài viết

Lượt xem bài này: 1757
Mặc định Chứng minh: \[x^3+y^3+z^3+xyz \geq 4\]

Cho $x,y,z\ge -\frac{11}{4}$ thoả mãn $x+y+z=3$
Chứng minh:
\[x^3+y^3+z^3+xyz \geq 4\]


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hthtb22 
Lạnh Như Băng (15-06-2013)
  #2  
Cũ 09-03-2013, 22:34
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 15697
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.191 lần trong 1.384 bài viết

Mặc định

Nguyên văn bởi hthtb22 Xem bài viết
Cho $x,y,z\ge -\frac{11}{4}$ thoả mãn $x+y+z=3$
Chứng minh:
\[x^3+y^3+z^3+xyz \geq 4\]
Hướng dẫn:

Cách 1: (Đồng bậc hóa)
Nhầm lẫn đáng tiếc.
Cách 2: (Dồn biến)
Ta có \[\begin{aligned}x^3+y^3+z^3+xyz-4&=(3-z)^3-3xy(3-z)+z^3+xyz-4\\ &= (4z-9)xy+z^3+(3-z)^3-4=f(xy)\end{aligned}\]
Không giảm tổng quát giả sử $z=\min \{ x,y,z \}\Rightarrow z\le 1.$ Khi đó, $f(xy)$ nghịch biến theo biến $xy$, mà ta có $xy\le \dfrac{(3-z)^2}{4}$ nên có được
\[f(xy)\ge \dfrac{(4z-9)(3-z)^2}{4}+z^3+(3-z)^3-4= \dfrac{(z-1)^2(4z+11)}{4}\ge 0,\ \forall z\ge- \dfrac{11}{4}\]
Từ đó suy ra điều phải chứng minh và đẳng thức có được khi $x=y=z=1.$


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 7 người đã cảm ơn cho bài viết này
hahahaha1 (10-03-2013), Hiệp sỹ bóng đêm (09-03-2013), hthtb22 (09-03-2013), Lạnh Như Băng (24-04-2013), Lưỡi Cưa (09-03-2013), Mạnh (09-03-2013), Tuấn Anh Eagles (10-03-2013)
  #3  
Cũ 09-03-2013, 23:31
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 15697
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.191 lần trong 1.384 bài viết

Mặc định

Nguyên văn bởi Lưỡi Cưa Xem bài viết
Sao có thể kết luận nghịch biến Thầy Mẫn?
Vì $f'(xy)=4z-9\le 4.1-9=-5<0.$ Ở trên tôi nhầm z=min... thành x=min...


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lê Đình Mẫn 
Lạnh Như Băng (24-04-2013)
  #4  
Cũ 10-03-2013, 00:07
Avatar của hahahaha1
hahahaha1 hahahaha1 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 2 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 49
Điểm: 6 / 870
Kinh nghiệm: 97%

Thành viên thứ: 840
 
Tham gia ngày: Oct 2012
Bài gửi: 18
Đã cảm ơn : 46
Được cảm ơn 78 lần trong 17 bài viết

Mặc định

Nguyên văn bởi Lê Đình Mẫn Xem bài viết
Hướng dẫn:

Theo $Schur$ bậc 3 ta có
\[x^3+y^3+z^3+3xyz\ge xy(x+y)+yz(y+z)+zx(z+x)\ (2)\]
$Schur$ chỉ áp dụng khi $x;y;z$ không âm.Ở đây cho $x=2;y=3;z=-2$ là thấy ngay nó sai.


Thằng em mất dạy sao mày mò ra được pass của anh hả.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Lê Đình Mẫn (10-03-2013), Lạnh Như Băng (24-04-2013), Miền cát trắng (10-03-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
chứng, cho x^3 y^3=z^3 chung minh xyz:7
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên