Câu IV - Đề thi thử ĐH số 5 năm 2013 (tạp chí TH&TT) - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học Không Gian

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 22-02-2013, 13:07
Avatar của Nắng vàng
Nắng vàng Nắng vàng đang ẩn
Thành viên Danh dự
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 554
Điểm: 215 / 8383
Kinh nghiệm: 17%

Thành viên thứ: 849
 
Tham gia ngày: Oct 2012
Bài gửi: 645
Đã cảm ơn : 1.578
Được cảm ơn 1.021 lần trong 359 bài viết

Lượt xem bài này: 1815
Mặc định Câu IV - Đề thi thử ĐH số 5 năm 2013 (tạp chí TH&TT)

Câu IV. Cho hình chóp tứ giác $S.ABCD$ có các cạnh bên $ SA=SB=SD=a$ ; đáy $ABCD$ là hình thoi có góc $\widehat {BAD} = {60^0}$ và mặt phẳng $(SDC)$ tạo với mặt phẳng $(ABCD)$ một góc $30^0$. Tính thể tích hình chóp $S.ABCD$.


Chủ đề được quan tâm nhiều nhất:



Thinking out of the box


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nắng vàng 
cuclac (23-02-2014)
  #2  
Cũ 22-02-2013, 18:04
Avatar của leminhansp
leminhansp leminhansp đang ẩn
Thành viên Chính thức
Đến từ: XT - Nam Định
 
Cấp bậc: 6 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 135
Điểm: 19 / 2019
Kinh nghiệm: 41%

Thành viên thứ: 1126
 
Tham gia ngày: Nov 2012
Bài gửi: 57
Đã cảm ơn : 33
Được cảm ơn 58 lần trong 32 bài viết

Talking Định hướng

Click the image to open in full size.

Từ giả thiết dễ nhận thấy: $S.ABD$ là hình chóp đều
Do đó gọi $G$ là trọng tâm $\Delta ABD$ thì $SG\bot (ABCD)$
Khi đó: Kẻ $GF\bot DC$ thì $\widehat{SFG}=\widehat{((SCD),(ABCD))}=30^o$
Gọi $SG=h$ khi đó dựa vào tam giác đồng dạng, tính chất trọng tâm ta tính được $AG$ theo $h$
Mà tam giác $SAG$ vuông tại $G$ nên theo Pythago $SA^2=SG^2+AG^2$
Từ đó tính được $h$ theo $a$ và tìm được thể tích $S.ABCD$


Hãy cố gắng khi còn có thể!


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
catbuilata (26-02-2013), cuclac (23-02-2014), Hà Nguyễn (22-02-2013)
  #3  
Cũ 23-02-2013, 00:29
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 651
Điểm: 307 / 9390
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi hoanghai1195 Xem bài viết
Câu IV. Cho hình chóp tứ giác $S.ABCD$ có các cạnh bên $ SA=SB=SD=a$ ; đáy $ABCD$ là hình thoi có góc $\widehat {BAD} = {60^0}$ và mặt phẳng $(SDC)$ tạo với mặt phẳng $(ABCD)$ một góc $30^0$. Tính thể tích hình chóp $S.ABCD$.
Gọi H là trọng tâm $\Delta ABD\Rightarrow SH\perp (ABCD)\Rightarrow SH\perp CD$ (1)

$\Delta ABD$ đều $\Rightarrow DH\perp AB\Rightarrow DH\perp CD$ (2)

Từ (1) và (2) $\Rightarrow CD\perp (SHD)\Rightarrow CD\perp SD\Rightarrow \widehat{SDH}=\widehat{(SCD,ABCD)}=30^0$

$\Rightarrow SH=\dfrac{1}{2}SD=\frac{a}{2}; $ $AB=DH\sqrt{3}=\dfrac{3a}{2}$

$\Rightarrow S_{ABCD}=\dfrac{9a^2\sqrt{3}}{8}$ $\Rightarrow V_{S.ABCD}=\dfrac{3a^3\sqrt{3}}{16}$


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
catbuilata (26-02-2013), cuclac (23-02-2014), Lưỡi Cưa (23-02-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Chia sẻ toàn bộ tài liệu cấp 3 của mình (2013) NGUOITHOIGIO Chuyên đề chọn lọc môn Toán 1 17-05-2016 11:28



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
5thtt, Đề, đề, cau i de thi thu dh so 5 2013 tap chi th va tt, http://k2pi.net/showthread.php?t=4101, k2pi.net, tạp, thandtt, thử
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014