Cho x>0 và y>0. Tìm giá trị nhỏ nhất của $P = 2\left( {\frac{{x^5 }}{y} + \frac{{y^5 }}{x}} \right) + x^8 + y^8 - 4\left( {1 + xy} \right)^2 $ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 22-02-2013, 12:07
Avatar của Sahara
Sahara Sahara đang ẩn
Thành viên Chính thức
Đến từ: CÁI NẮNG VÀ
Nghề nghiệp: HỌC SINH VÀ
 
Cấp bậc: 6 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 148
Điểm: 21 / 2134
Kinh nghiệm: 95%

Thành viên thứ: 3291
 
Tham gia ngày: Jan 2013
Bài gửi: 65
Đã cảm ơn : 56
Được cảm ơn 35 lần trong 24 bài viết

Lượt xem bài này: 923
Mặc định Cho x>0 và y>0. Tìm giá trị nhỏ nhất của $P = 2\left( {\frac{{x^5 }}{y} + \frac{{y^5 }}{x}} \right) + x^8 + y^8 - 4\left( {1 + xy} \right)^2 $

Cho x>0 và y>0. Tìm giá trị nhỏ nhất của $P = 2\left( {\frac{{x^5 }}{y} + \frac{{y^5 }}{x}} \right) + x^8 + y^8 - 4\left( {1 + xy} \right)^2 $


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 22-02-2013, 22:47
Avatar của 0915549009
0915549009 0915549009 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 5 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 118
Điểm: 16 / 1688
Kinh nghiệm: 75%

Thành viên thứ: 3934
 
Tham gia ngày: Feb 2013
Bài gửi: 48
Đã cảm ơn : 0
Được cảm ơn 46 lần trong 28 bài viết

Mặc định

Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
$2(\frac{x^5}{y}+\frac{y^5}{x}) \geq 2\frac{(x^3+y^3)^2}{xy}$
Mặt khác, $x^3+y^3=(x+y)(x^2-xy+y^2) \geq (x+y)xy \geq 2xy\sqrt{xy}$
Mà $x^8+y^8 \geq 2x^4y^4$
Nên $P \geq 4(xy)^2+2(xy)^4-4(1+xy)^2$
Đặt $xy= t(t>0)$. Xét hàm số $f(t)=4t^2+2t^4-4(1+t)^2$
$f'(t)=8t^3-8=0$ khi $t=1$
Vậy $Min P=-10$ khi $x=y=1$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 01-03-2013, 14:42
Avatar của Lưỡi Cưa
Lưỡi Cưa Lưỡi Cưa đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương
Nghề nghiệp: Giáo viên
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 584
Điểm: 241 / 8524
Kinh nghiệm: 37%

Thành viên thứ: 1972
 
Tham gia ngày: Dec 2012
Bài gửi: 723
Đã cảm ơn : 1.352
Được cảm ơn 1.145 lần trong 465 bài viết

Mặc định

Nguyên văn bởi Sahara Xem bài viết
Cho x>0 và y>0. Tìm giá trị nhỏ nhất của $P = 2\left( {\frac{{x^5 }}{y} + \frac{{y^5 }}{x}} \right) + x^8 + y^8 - 4\left( {1 + xy} \right)^2 $
Theo $AM - GM$: $$\dfrac{x^5}{y}+\dfrac{y^5}{x}\geq 2x^2y^2$$
và $$x^8+1+1+1\geq 4x^2$$
$$y^8+1+1+1\geq 4y^2$$
Từ đó, $$P+6\geq 4(x^2+y^2-2xy)-4=4(x-y)^2-4\geq -4$$
Do đó, $$P\geq -10$$


Đừng ngại học hỏi
Bạn sẽ giỏi!


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lưỡi Cưa 
Sv_ĐhY_013 (02-03-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
2left, 4left, của, cho x>0 ; y>0, cho x>0 y>0.tìm giá trị nhỏ nhất, fracx5, fracy5, nhất, nhỏ, right2, trị, x&gt0, x>0, y&gt0, y>0
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014