Giải bất phương trình sau : $\sqrt {1 + \mathop {\log }\nolimits_2 } x - \sqrt {1 - \mathop {\log }\nolimits_2 } x \ge \mathop {\log }\nolimits_2 x$ - Trang 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số & Giải tích 12 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hàm số Mũ-Logarit

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #5  
Cũ 01-02-2013, 12:50
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13491
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định

Tôi đã chỉnh lại. Ý của tôi là $\begin{cases}A.B\le 0\\ B\le 0\end{cases}\iff B=0\text{ hoặc }\begin{cases}A\ge 0\\ B<0\end{cases}$


Chủ đề được quan tâm nhiều nhất:



HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #6  
Cũ 01-02-2013, 13:17
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 651
Điểm: 307 / 9387
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định

Nguyên văn bởi Mai Tuấn Long Xem bài viết
$ĐK: \begin{cases}1+log_2x\geq 0\\1-log_2x\geq 0\end{cases}$

$BPT\Leftrightarrow 2log_2x\geq log_2x\left(\sqrt{1+log_2x}+\sqrt{1-log_2x} \right)$ $\Leftrightarrow log_2x\left(\sqrt{1+log_2x}+\sqrt{1-log_2x}-2 \right)\leq 0$

Ta có:$\left(\sqrt{1+log_2x}+\sqrt{1-log_2x} \right)^2\leq 2\left[(\sqrt{1+log_2x})^2+(\sqrt{1-log_2x})^2 \right]=4$

$\Rightarrow \sqrt{1+log_2x}+\sqrt{1-log_2x}\leq 2$ $\Rightarrow \sqrt{1+log_2x}+\sqrt{1-log_2x}-2 \leq 0$

$\Rightarrow BPT\Leftrightarrow \begin{cases}log_2x\geq0\\1+log_2x\geq 0\\1-log_2x\geq 0\end{cases}$ $\Leftrightarrow 0\leq log_2x\leq 1\Leftrightarrow1\leq x\leq 2$

Xin mọi người chỉ giáo, lời giải trên của tôi thiếu chặt chẽ chỗ nào ?


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
  #7  
Cũ 03-02-2013, 09:09
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13491
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định

Chẳng hạn, giải BPT: \[\log_2\frac{1}{2x}(\sqrt{1+\log_2x}+\sqrt{1-\log_2x}-2)\le 0\]
+ Nếu theo hướng giải của thầy Long thì:
\[BPT\iff \begin{cases}\log_2\frac{1}{2x}\ge 0\\ 1+\log_2x\ge 0\\ 1-\log_2x\ge 0\end{cases}\iff \begin{cases}0<x\le \dfrac{1}{2}\\ \dfrac{1}{2}\le x\le 2\end{cases}\iff x= \dfrac{1}{2}\]
+ Nhưng $x=1$ cũng là một nghiệm của BPT trên.


Dẫn chứng của tôi có vấn đề gì không nhỉ?


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lê Đình Mẫn 
dienhosp3 (03-02-2013)
  #8  
Cũ 03-02-2013, 09:42
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 82 / 829
Điểm: 544 / 14503
Kinh nghiệm: 16%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.632
Đã cảm ơn : 1.861
Được cảm ơn 6.065 lần trong 1.187 bài viết

Mặc định

Ý của thầy Mẫn là giúp HS cẩn thận hơn với những kiểu toán như :


Giải bất phương trình : $x.{\left( {x - 3} \right)^2} \le 0$

Bài thầy Long không sai, vì :
$\left[ {\begin{array}{*{20}{c}}
{\sqrt {1 + lo{g_2}x} + \sqrt {1 - lo{g_2}x} - 2 = 0}\\
{\left\{ {\begin{array}{*{20}{c}}
{{{\log }_2}x \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\ ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\
{\sqrt {1 + lo{g_2}x} + \sqrt {1 - lo{g_2}x} - 2< 0}
\end{array}} \right.}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{lo{g_2}x \ge 0}\\
{1 + lo{g_2}x \ge 0}\\
{1 - lo{g_2}x \ge 0}
\end{array}} \right.$

Hay nói cách khác, bài Bất phương trình này rơi vào dạng như : $x.{\left( {x + 3} \right)^2} \le 0$

+) Lời khuyên của thầy Mẫn dành cho HS là quan trọng.
+) Còn lời giải thì còn tùy thuộc vào từng bài toán cụ thể, nên khi dạy không nên quá cầu toàn vào một quy trình hay một hướng giải nào mà ta đã định sẵn HS được !


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
hbtoanag (03-02-2013), Lê Đình Mẫn (03-02-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hệ phương trình chứa $\sqrt {2{x^2} - x + y + 4} - \sqrt {21x + y - 16} + {x^2} - x + y + 1 = 0$ phuongthaosp1 Giải hệ phương trình 0 02-06-2016 15:53
Giải hệ phương trình chứa ${\sqrt {{x^2} + 4x + 3} + y\left( {1 - \sqrt {x + 3} } \right) = {y^3} + \left( {1 - {y^2}} \right)\sqrt {x + 1} }$ dobinh1111 Giải hệ phương trình 0 18-05-2016 11:35
Giải phương trình $\sqrt{x^2+6} +\sqrt{x + 2} = \sqrt{x^2 - 2x + 4}+x^2$ Khanhduy Giải phương trình Vô tỷ 0 15-05-2016 20:10
Giải phương trình $\begin{array}{l} x\sqrt {\frac{{4{x^2} - 8x}}{{x + 1}}} + 2\left( {{x^2} - 2x - 1} \right)\sqrt {\frac{{x + 1}}{{{x^2} - 2x}}} - \\ \sqrt {2\left( {{x^4} - 4{x^3} + 3{x^2} + 4x + 1} \right)} = {x^2} - x - 1 \end{array}$ Trần Quốc Việt Giải phương trình Vô tỷ 0 05-02-2016 17:53
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$sqrt, 1, bất, ge, giải, log, mathop, nolimits2, phương, sau, sqrt, trình, x$
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014