Hàm số mũ và logarit

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TÀI LIỆU MÔN TOÁN THPT giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Tài liệu Giải tích THPT giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Tài liệu Mũ - Lôgarit


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 03-10-2018, 19:40
Avatar của hoclop
hoclop hoclop đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 2
Điểm: 1 / 2
Kinh nghiệm: 10%

Thành viên thứ: 62052
 
Tham gia ngày: Aug 2018
Bài gửi: 3
Đã cảm ơn : 0
Được cảm ơn 0 lần trong 0 bài viết

Lượt xem bài này: 261
Mặc định Hàm số mũ và logarit

Hàm số mũ và hàm số lúy thừa là bài quan trọng thuộc chương trình lớp 12. Để học tốt các bạn cần xem kĩ bài sau:
1.1. Định nghĩa: Hàm số $y = {x^\alpha }$ với $\alpha \in \mathbb{R}$ được gọi là hàm số lũy thừa.
1.2. Tập xác định: Tập xác định của hàm số $y = {x^\alpha }$ là:
  • $D = \mathbb{R}$ nếu $\alpha $ là số nguyên dương.
  • $D = \mathbb{R}\backslash \left\{ 0 \right\}$ với $\alpha $ nguyên âm hoặc bằng 0.
  • $D = (0; + \infty )$ với $\alpha $ không nguyên.
1.3. Đạo hàm: Hàm số $y = {x^\alpha },{\rm{ }}(\alpha \in \mathbb{R})$ có đạo hàm với mọi $x > 0$ và $({x^\alpha })' = \alpha .{x^{\alpha - 1}}.$
1.4. Tính chất của hàm số lũy thừa trên khoảng$(0; + \infty )$.
$y = {x^\alpha },{\rm{ }}\alpha > 0$
a. Tập khảo sát: $(0; + \infty )$
b. Sự biến thiên:
  • $y' = \alpha {x^{\alpha - 1}} > 0,{\rm{ }}\forall x > 0.$
  • Giới hạn đặc biệt: $\mathop {\lim }\limits_{x \to {0^ + }} {x^\alpha } = 0,{\rm{ }}\mathop {\lim }\limits_{x \to + \infty } {x^\alpha } = + \infty .$
  • Tiệm cận: không có
2. Hàm số mũ: $y = {a^x},{\rm{ }}(a > 0,a \ne 1).$
2.1.Tập xác định: $D = \mathbb{R}$
2.2.Tập giá trị: $T = (0, + \infty ),$ nghĩa là khi giải phương trình mũ mà đặt $t = {a^{f(x)}}$ thì t > 0.
2.3. Tính đơn điệu:
  • Khi a > 1 thì hàm số mũ $y = {a^x}$ đồng biến, khi đó ta luôn có: ${a^{f(x)}} > {a^{g(x)}} \Leftrightarrow f(x) > g(x).$
  • Khi 0 < a < 1 thì hàm số mũ $y = {a^x}$ nghịch biến, khi đó ta luôn có: ${a^{f(x)}} > {a^{g(x)}} \Leftrightarrow f(x) < g(x).$
2.4. Đạo hàm:
$\begin{array}{l} ({a^x})' = {a^x}.\ln a \Rightarrow ({a^u})' = u'.{a^u}.\ln a\\ ({e^x})' = {e^x} \Rightarrow ({e^u})' = {e^u}.u'\\ (\sqrt[n]{u})' = \frac{{u'}}{{n.\sqrt[n]{{{u^{n - 1}}}}}} \cdot \end{array}$


Học Lớp


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên