Câu 3 - đề kiểm tra số 2 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Toạ độ trong mặt phẳng

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 18-01-2013, 18:45
Avatar của hthtb22
hthtb22 hthtb22 đang ẩn
$\mathscr{H.T.H}$
Đến từ: THPT Chuyên THái Bình
Nghề nghiệp: H/S
Sở thích: Toán
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 313
Điểm: 70 / 4545
Kinh nghiệm: 52%

Thành viên thứ: 2345
 
Tham gia ngày: Dec 2012
Bài gửi: 210
Đã cảm ơn : 138
Được cảm ơn 452 lần trong 150 bài viết

Lượt xem bài này: 926
Mặc định Câu 3 - đề kiểm tra số 2

Bài 3:
Cho $\Delta : 3x+4y-25=0$. Điểm M chạy trên $\Delta$.
Trên tia OM lấy N sao cho $OM.ON=1$.
Tìm quỹ tích điểm N


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 19-01-2013, 16:43
Avatar của Lê Đình Mẫn
Lê Đình Mẫn Lê Đình Mẫn đang ẩn
$\color{blue}{MANLONELY}$
Đến từ: Quảng Bình
 
Cấp bậc: 36 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 89 / 893
Điểm: 655 / 13502
Kinh nghiệm: 72%

Thành viên thứ: 859
 
Tham gia ngày: Oct 2012
Bài gửi: 1.966
Đã cảm ơn : 1.997
Được cảm ơn 4.188 lần trong 1.383 bài viết

Mặc định

Nguyên văn bởi hthtb22 Xem bài viết
Bài 3:
Cho $\Delta : 3x+4y-25=0$. Điểm M chạy trên $\Delta$.
Trên tia OM lấy N sao cho $OM.ON=1$.
Tìm quỹ tích điểm N
Phân tích và hướng dẫn giải:

Click the image to open in full size.
Phân tích: Giả thiết $OM.ON=1$ khiến tôi liên tưởng đến một công thức trong phần hệ thức lượng của tam giác vuông học hồi cấp hai. Đó là "Bình phương của một cạnh góc vuông bằng tích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền."
Chính vì thế, tôi cần dựng nên một tam giác vuông sao cho tam giác vuông đó nhận $OM$ làm cạnh huyền, điểm $N$ là chân đường cao, và thế là ý đồ đã rõ ràng.
Hướng giải: Dựng đường tròn tâm $(O,1)$. Dễ dàng chứng minh được $\Delta$ là tiếp tuyến của $(O,1)$ tại tiếp điểm $B\left(\frac{3}{5};\frac{4}{5}\right)$.
Ta có $\Delta OBM$ vuông tại $B.$ Gọi $N'$ là hình chiếu của $B$ trên $OM.$ Suy ra $OM.ON'=OB^2=1.$ Và cũng suy ra được $N$ trùng $N'.$
Vì $OB$ cố định nên suy ra quỹ tích điểm $N$ là đường tròn đường kính $OB.$ ngoại trừ điểm $O$.


HỌC CÁCH TƯ DUY QUA TỪNG LỜI GIẢI.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
hthtb22 (19-01-2013), Lưỡi Cưa (19-01-2013)
  #3  
Cũ 19-01-2013, 18:05
Avatar của hthtb22
hthtb22 hthtb22 đang ẩn
$\mathscr{H.T.H}$
Đến từ: THPT Chuyên THái Bình
Nghề nghiệp: H/S
Sở thích: Toán
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 313
Điểm: 70 / 4545
Kinh nghiệm: 52%

Thành viên thứ: 2345
 
Tham gia ngày: Dec 2012
Bài gửi: 210
Đã cảm ơn : 138
Được cảm ơn 452 lần trong 150 bài viết

Mặc định

Cách giải khác ạ

Hạ $OH \perp BC$. Trên BC lấy K sao cho $OH.OK=1$
Như vậy tứ giác $HMNK$ nội tiếp
Có: $\widehat{OHM}=90^o$
Nên $ON \perp NK$

Do vậy $N \in (\dfrac{OK}{2})$
Đáp số: $x^2+y^2-\dfrac{3}{25}x-\dfrac{4}{25}y=0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hthtb22 
Lưỡi Cưa (19-01-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Kiểm tra thứ hạng của một Website hoặc Forum trên alexa.com FOR U Phần mềm - Mã nguồn 2 22-05-2016 23:16
Giúp e với mọi người ơi! Xác suất cực khó! TVTSDK Hỗ trợ giải toán 0 17-05-2016 08:54



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
2, 3, đề, câu, kiểm, số, tra
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014