Cho tam giác $ABC$ có 3 góc nhọn, $H$ là trực tâm của tam giác, $R$ là bán kính đường tròn ngoại tiếp. Chứng minh rằng: $AH=2R\cos A$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Véctơ - Ứng dụng

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 14-01-2013, 12:52
Avatar của Lưỡi Cưa
Lưỡi Cưa Lưỡi Cưa đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương
Nghề nghiệp: Giáo viên
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 584
Điểm: 241 / 8518
Kinh nghiệm: 37%

Thành viên thứ: 1972
 
Tham gia ngày: Dec 2012
Bài gửi: 723
Đã cảm ơn : 1.352
Được cảm ơn 1.145 lần trong 465 bài viết

Lượt xem bài này: 1120
Mặc định Cho tam giác $ABC$ có 3 góc nhọn, $H$ là trực tâm của tam giác, $R$ là bán kính đường tròn ngoại tiếp. Chứng minh rằng: $AH=2R\cos A$



Đừng ngại học hỏi
Bạn sẽ giỏi!


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 14-01-2013, 19:18
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7123
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định

Nguyên văn bởi Lưỡi Cưa Xem bài viết
Cho tam giác $ABC$ có 3 góc nhọn, $H$ là trực tâm của tam giác, $R$ là bán kính đường tròn ngoại tiếp. Chứng minh rằng: $AH=2R\cos A$
Giải.
Kẻ đường kính BB1 khi đó ta có $\hat{BAC}=\hat{BB_{1}C}\rightarrow cosA=cos\hat{BB_{1}C}=\frac{CB_{1}}{2R}=\frac{AH}{ 2R}\rightarrow AH=2RcosA$. Chú ý rằng AHCB1 là hình bình hành


TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Lưỡi Cưa (14-01-2013), tndmath (20-03-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho tam giác ABC vuông tại A có B(4;1), I là tâm đường tròn nội tiếp tam giác ABC, đường thẳng qua C vuông góc CI cắt đường tròn ngoại tiếp tam giác IBC tại K(7;7), biết C thuộc đường thẳng d: 3x-y+2=0 Harass Hình giải tích phẳng Oxy 0 28-05-2016 18:32
Cho tam giác $ABC$ không cân nội tiếp đường tròn tâm $I$ với các đường cao $AD,BE$.Biết $D\left(-\frac{1}{5};-\frac{2}{5} \right);E\left(2;2 \right);F(1;0)$ là hình chiếu của $B$ lên đường thẳng $AI$.Tìm toạ đ Đinh Xuân Hùng Hình giải tích phẳng Oxy 0 16-05-2016 11:49
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC nhọn và nội tiếp đường tròn tâm I, các tiếp tuyến với đường tròn tại A và C cắt tiếp tuyến có tiếp điểm B tại các điểm tương ứng M(-4; Khanhduy Hình giải tích phẳng Oxy 0 14-05-2016 00:00
Bài toán hay: Cho tam giác ABC nội tiếp đường tròn tâm O, có hai đường cao BE và CF cắt nhau tại H(5;5). EF cắt BC tại P(8;0). M(9/2;7/2). Tìm tọa độ các đỉnh của tam giác ABC. (Liệu có thể chứng minh PH dobinh1111 Hình giải tích phẳng Oxy 0 03-05-2016 12:44
Cho tam giác $ABC$, phân giác ngoài góc $B$ ...Tìm toạ độ các đỉnh thangk56btoanti Hình giải tích phẳng Oxy 2 10-04-2016 14:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$abc$, $ah2rcos, đường, của, chứng, cho tam giác abc có 3 góc nhọn, giác, kính, ngoại, nhọn, rằng, tiếp, tròn, trực
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014