[TOPIC] Sử dụng bất đẳng thức $Cauchy-Schwarz$ chứng minh bất đẳng thức - Trang 8 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #50  
Cũ 12-05-2013, 11:04
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7117
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định

Nguyên văn bởi tonggianghg Xem bài viết

Bài 24 :

Cho $a,b,c >0$ thỏa mãn $a^2+b^2+c^2 = 3$. Chứng minh rằng :

$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} + \frac{3}{2}(a+b+c) \geq \frac{15}{2}$$
Ta có
$VT\geq \frac{9}{a+b+c}+\frac{3}{2}\left(a+b+c \right)=\frac{9}{t}+\frac{3}{2}t=f(t);0<t\leq 3$


Chủ đề được quan tâm nhiều nhất:



TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Hiệp sỹ bóng đêm (12-05-2013), Lạnh Như Băng (14-05-2013)
  #51  
Cũ 12-05-2013, 11:24
Avatar của Hồng Sơn-cht
Hồng Sơn-cht Hồng Sơn-cht đang ẩn
Quản Lý Chuyên Mục
Đến từ: Chuyên Hà Tĩnh
Sở thích: ngủ ngày
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 449
Điểm: 138 / 6719
Kinh nghiệm: 96%

Thành viên thứ: 1020
 
Tham gia ngày: Oct 2012
Bài gửi: 416
Đã cảm ơn : 1.041
Được cảm ơn 632 lần trong 286 bài viết

Mặc định

Bài 25
Cho a,b,c >0 thoả mãn ab+bc+ac=1.Tìm min
A=$\frac{{{a^8}}}{{{{({a^2} + {b^2})}^2}}} + \frac{{{b^8}}}{{{{({c^2} + {b^2})}^2}}} + \frac{{{c^8}}}{{{{({a^2} + {c^2})}^2}}}$


Ngọc không giũa không thành đồ đẹp.
Người không học không thể trưởng thành.



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Hiệp sỹ bóng đêm (12-05-2013), Lạnh Như Băng (12-05-2013), Tuấn Anh Eagles (28-07-2013)
  #52  
Cũ 12-05-2013, 12:21
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7117
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định

Nguyên văn bởi sonvipthoiroi Xem bài viết
Bài 25
Cho a,b,c >0 thoả mãn ab+bc+ac=1.Tìm min
A=$\frac{{{a^8}}}{{{{({a^2} + {b^2})}^2}}} + \frac{{{b^8}}}{{{{({c^2} + {b^2})}^2}}} + \frac{{{c^8}}}{{{{({a^2} + {c^2})}^2}}}$
Giải.
Ta có
$\left(a^2+b^2 \right)^2\leq 2\left(a^4+b^4 \right)\rightarrow A\geq \frac{a^4+b^4+c^4}{4}\geq \frac{\left(a^2+b^2+c^2 \right)^2}{12}\geq \frac{1}{12}$


TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
Hồng Sơn-cht (12-05-2013), Hiệp sỹ bóng đêm (12-05-2013), Lạnh Như Băng (12-05-2013), Tuấn Anh Eagles (28-07-2013)
  #53  
Cũ 12-05-2013, 12:22
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 7887
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 812 lần trong 360 bài viết

Mặc định

Nguyên văn bởi thái bình Xem bài viết
Ta có
$VT\geq \frac{9}{a+b+c}+\frac{3}{2}\left(a+b+c \right)=\frac{9}{t}+\frac{3}{2}t=f(t);0<t\leq 3$
Đến đó E vẫn không đánh giá được ạh. BDT cuối cùng tương đương với :

$$(t-3)(t-2) \geq 0$$


Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lạnh Như Băng 
  #54  
Cũ 12-05-2013, 12:26
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7117
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định

Nguyên văn bởi tonggianghg Xem bài viết
Đến đó E vẫn không đánh giá được ạh. BDT cuối cùng tương đương với :

$$(t-3)(t-2) \geq 0$$
Đến đây xét hàm số $f(t)=\frac{9}{t}+\frac{3}{2}t,0<t\leq 3$ bằng cách lập bảng biến thiên em ah.


TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  thái bình 
  #55  
Cũ 14-05-2013, 16:25
Avatar của Lạnh Như Băng
Lạnh Như Băng Lạnh Như Băng đang ẩn
NEVER GIVE UP !
Đến từ: Hà Giang
Nghề nghiệp: Học sinh
Sở thích: G-Dragon
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 541
Điểm: 204 / 7887
Kinh nghiệm: 65%

Thành viên thứ: 1966
 
Tham gia ngày: Dec 2012
Bài gửi: 613
Đã cảm ơn : 1.186
Được cảm ơn 812 lần trong 360 bài viết

Mặc định

Bài 25:

Cho $ a,b,c,d >0$ thỏa mãn : $\frac{1}{a}+\frac{1}{b}+ \frac{1}{c}+ \frac{1}{d}=4$. Chứng minh rằng :

$$\sqrt[3]{\frac{a^3+b^3}{2}}+\sqrt[3]{\frac{b^3+c^3}{2}}+\sqrt[3]{\frac{c^3+d^3}{2}}+\sqrt[3]{\frac{d^3+a^3}{2}} \leq 2(a+b+c+d)-4$$


Không ngừng thách thức !


Bế quan tu luyện


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Hồng Sơn-cht (14-05-2013), Hiệp sỹ bóng đêm (28-07-2013), Tuấn Anh Eagles (28-07-2013)
  #56  
Cũ 28-07-2013, 12:19
Avatar của phatthientai
phatthientai phatthientai đang ẩn
Thành viên Chính thức
Nghề nghiệp: Học sinh
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 65 / 658
Điểm: 315 / 9018
Kinh nghiệm: 35%

Thành viên thứ: 8227
 
Tham gia ngày: Apr 2013
Bài gửi: 946
Đã cảm ơn : 108
Được cảm ơn 265 lần trong 190 bài viết

Mặc định

Một bài khá hay
Bài 26
Cho $x,y,z>0;xyz=1$ chứng minh

$$\frac{{{a}^{4}}}{{{\left( a+b \right)}^{2}}\left( a+c \right)}+\frac{{{b}^{4}}}{{{\left( b+c \right)}^{2}}\left( b+a \right)}+\frac{{{c}^{4}}}{{{\left( c+a \right)}^{2}}\left( c+b \right)}\ge \frac{3}{8}$$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Hiệp sỹ bóng đêm (28-07-2013), N H Tu prince (28-07-2013), Tuấn Anh Eagles (28-07-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Chứng minh Các BĐT đa thức bậc 4 ba biến thực trên máy tính Inspectorgadget [Tài liệu] Bất đẳng thức 0 27-04-2016 12:45
SPHN lần 3;Với các số thục dương $x,y$. Chứng minh bất đẳng thức: $\frac{1}{x+y+1}-\frac{1}{\left( x+1 \right)\left( y+1 \right)}<\frac{1}{11}$ catbuilata Bất đẳng thức - Cực trị 0 21-04-2016 13:13
Sử dụng bất đẳng thức để giải bất phương trình hthtb22 [Tài liệu] Phương trình-BPT vô tỷ 4 10-04-2016 09:11



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$bunhiacopski$, $cauchyschwarz$, 1/a 25/b 64/c tìm gtnn và 4a 9b 16c = 49, 4a 9b 16c=49. cm 1/a 25/b 64/c, đẳng, bat dang thuc, bat dang thuc cauchy schwarz, bat dang thuc cauchy schwarz va ung dung, bat dang thuc cauchy-schwarz, bat dang thuc cosi mo rong, bat dang thuc schwart, bat dang thuc schwarts, bat dang thuc schwartz, bat dang thuc swat, bĐt caushy-schwarz, bất, bất đẳng thức cauchy mở rộng, bất đẳng thức cauchy schwarz, bất đẳng thức cauchy-schwarz-holder thpt, bất đẳng thức côsi swat, bất đẳng thức cosi mở rộng, bất đẳng thức cosi swa, bất đẳng thức cosi swat, bất đẳng thức schwarz, bất đẳng thức swart, bất đẳng thức swat, bất đẳng thứccauchy schwarz, bđt cauchy schwarz lớp 9, bđt schwarz, bdt cauchy swat, bdt cosi swat, bdt schwarz, bdt swart hay, công thức bđt bcs, công thức schwarz, công thuc cauchy, côsi mở rộng, chứng, chứng minh bất đẳng thức bằng cauchy, chứng minh bất đẳng thức cauchy-schwarz, chứng minh bất đẳng thức côsi dạng phân thức, chứng minh bất đẳng thức côsi schwartz, chứng minh bất đẳng thức schwarz, chứng minh bất thức shwart, cho 4a 9b 16c=49 tìm gtnn của (1/a) (25/b) (64/c), cho 4a 9b 16c=49. cm: 1/a 25/b 64/c>=49, chung minh bat dang thuc cauchy schwarz, chung minh bat dang thuc cauchy-schwarz, chung minh bat dang thuc swartz, chung minh bất đang thuc swat, chung minh bdt cauch y-schwarz engel, chung minh bdt cauchy-schwarz, chứng minh (x y z)^2 > 3(xy yz xz), chứng minh bđt cosi swat, cm (a 1/a)^2 (b 1/b)^2 (c 1/c)^2 >33, cm 1/ 25/b 16/c, cm bất đẳng thức schwarz, cm bdt schwarz, dụng, giải pt vô tỉ bằng bdt bcs-hỏi đáp yahoo, http://k2pi.net/showthread.php?t=3108, huong dan chung minh dang thuc cosi schawrz, k2pi.net, nếu 4a 9b 16c = 49 thì 1/a 25/b 64/c >= 49, neu 4a 9b 16c=49 thì 1/a 25/b 64/c >= 49, phuong phap can bang cosi, tài liêu bđt cauchy va ung dung, thức, toán cm bđt áp dụng cauchy, topic, topic chung minh bđt bang pp cauchy schwarz
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014