Câu IV.Đề thi thử lần 1 của trường THPT Lý Thái Tổ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình giải tích phẳng Oxy

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 21-12-2012, 19:08
Avatar của Mạnh
Mạnh Mạnh đang ẩn
Khang Hi Vi Hành
Đến từ: CUNG TRĂNG
 
Cấp bậc: 14 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 348
Điểm: 85 / 5193
Kinh nghiệm: 93%

Thành viên thứ: 1144
 
Tham gia ngày: Nov 2012
Bài gửi: 255
Đã cảm ơn : 548
Được cảm ơn 538 lần trong 187 bài viết

Lượt xem bài này: 1086
Mặc định Câu IV.Đề thi thử lần 1 của trường THPT Lý Thái Tổ

Trong mặt phẳng tọa độ vuông góc $Oxy$, cho hình chữ nhật $ABCD$ có diện tích bằng 12, tâm $I$ là giao điểm của hai đường thẳng ${d_1} : x - y - 2 = 0$và ${d_2} : 2x + 4y - 13 = 0$. Trung điểm $M$ của cạnh $AD$ là giao điểm của ${d_1}$ với trục hoành. Tìm tọa độ các đỉnh của hình chữ nhật, biết $A$ có tung độ dương.


Chủ đề được quan tâm nhiều nhất:





Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Mạnh 
Hà Nguyễn (21-12-2012)
  #2  
Cũ 21-12-2012, 20:17
Avatar của thiencuong_96
thiencuong_96 thiencuong_96 đang ẩn
$ \text{Siêu Ẩu}$
Đến từ: Bình Phước
Nghề nghiệp: học sinh
Sở thích: Bay
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 173
Điểm: 27 / 2569
Kinh nghiệm: 95%

Thành viên thứ: 1373
 
Tham gia ngày: Nov 2012
Bài gửi: 81
Đã cảm ơn : 49
Được cảm ơn 185 lần trong 56 bài viết

Mặc định

Nguyên văn bởi giangmanh Xem bài viết
Trong mặt phẳng tọa độ vuông góc $Oxy$, cho hình chữ nhật $ABCD$ có diện tích bằng 12, tâm $I$ là giao điểm của hai đường thẳng ${d_1} : x - y - 2 = 0$và ${d_2} : 2x + 4y - 13 = 0$. Trung điểm $M$ của cạnh $AD$ là giao điểm của ${d_1}$ với trục hoành. Tìm tọa độ các đỉnh của hình chữ nhật, biết $A$ có tung độ dương.
Theo trên ta có :
$\begin{cases}
x-y-2=0& \\
2x+4y-13=0&
\end{cases}\Rightarrow $ $I\left (\frac{7}{2}; \frac{3}{2} \right )$

$\begin{cases}
x-y-2=0& \\
y=0&
\end{cases}\Rightarrow $ $M\left (2; 0 \right )$
Có $\overrightarrow{MI}=\left ( \frac{3}{2} ;\frac{3}{2}\right )\Rightarrow MI=\frac{3\sqrt{2}}{2}\Rightarrow CD=3\sqrt{2}$
Mà $S_{ABCD}=CD.AB\Rightarrow AB=2\sqrt{2}$
Mặt khác : $pt~(IM):x-y-2=0$ nên $(AD):x+y-2=0$
Gọi $A(a;2-a)$ Vậy $AM=\sqrt{2}$ suy ra $a=0$ hoặc $a=4$
Theo đề bài suy ra $A(0;2)\Rightarrow D(4;-2);~B(3;5);C(7;1)$


Lê Thiên Cương


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  thiencuong_96 
Hà Nguyễn (21-12-2012)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Đề thi thử THPT Quốc gia năm 2016 lần 2 trường THPT Phù Cừ Hưng Yên thangmathvn Đề thi THPT Quốc Gia | trườngTHPT 2 14-06-2016 18:08
Đề thi thử THPT chuyên Thái Bình Lần 5 Past Present Đề thi THPT Quốc Gia | trườngTHPT 6 14-06-2016 15:47
Giải chi tiết câu 8-9-10 trong đề thi thử THPT Quốc Gia của các trường THPT năm 2016 Phạm Kim Chung Đề thi THPT Quốc Gia năm 2017 18 09-06-2016 17:15
Một số đề thi thử THPT Quốc Gia năm 2016 của các trường THPT Phạm Kim Chung Đề thi THPT Quốc Gia | trườngTHPT 0 29-04-2016 13:10
Đề thi thử THPT Quốc Gia trường Phan Chu Trinh - Đà Nẵng Ẩn Số Đề thi THPT Quốc Gia | trườngTHPT 5 29-04-2016 00:07



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
1, câu, của, ivĐề, lần, , tổ, thái, thử, thi, thpt, trường
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014