Tìm toạ độ E,M - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải toán Hình học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình giải tích phẳng Oxy

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 09-02-2016, 14:34
Avatar của Trangnini
Trangnini Trangnini đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 0
Kinh nghiệm: 0%

Thành viên thứ: 52129
 
Tham gia ngày: Feb 2016
Bài gửi: 1
Đã cảm ơn : 0
Được cảm ơn 0 lần trong 0 bài viết

Lượt xem bài này: 539
Mặc định Tìm toạ độ E,M

Trong mp toạ độ oxy, cho tam giác ABC vuông tại A, BC có pt là y=0, M là trung điểm cạnh BC, điểm E thuộc đoạn MC. Gọi O(0;1/2) và I(7;8) lần lượt là tâm đường tròn ngoịa tiếp tam giác ABE và ACE. Tìm toạ độ E,M biết rằng hoành độ điểm E lớn hơn hoành độ điểm M


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 14-02-2016, 05:03
Avatar của truongdian
truongdian truongdian đang ẩn
Thành viên Chính thức
Đến từ: Bình Dương quê HT
Nghề nghiệp: ở nhà
Sở thích: chém gió
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 352
Điểm: 87 / 3210
Kinh nghiệm: 11%

Thành viên thứ: 29170
 
Tham gia ngày: Nov 2014
Bài gửi: 261
Đã cảm ơn : 110
Được cảm ơn 88 lần trong 63 bài viết

Mặc định Re: Tìm toạ độ E,M

Nguyên văn bởi Trangnini Xem bài viết
Trong mp toạ độ oxy, cho tam giác ABC vuông tại A, BC có pt là y=0, M là trung điểm cạnh BC, điểm E thuộc đoạn MC. Gọi O(0;1/2) và I(7;8) lần lượt là tâm đường tròn ngoịa tiếp tam giác ABE và ACE. Tìm toạ độ E,M biết rằng hoành độ điểm E lớn hơn hoành độ điểm M
Ta sẽ cm OE vuông góc IE
trước hết OI vuông góc AE
Xét dường tròn tâm O: $\widehat {IOE} = \frac{1}{2}\widehat {AOE} = \widehat {ABE}$
Xet duong tron tâm I: $\widehat {OIE} = \frac{1}{2}\widehat {AIE} = \widehat {ACE}$
Mà:
$\begin{array}{l}
\widehat {ABC} + \widehat {ACB} = {90^0}\\
\Rightarrow \widehat {IOE} + \widehat {OIE} = {90^0}\\
\Rightarrow \widehat {OEI} = {90^0}
\end{array}$
Tới đây coi như xong!


TÔI YÊU EM
Lê Quang Trường - 4/2/1998 - THPT Dĩ An (Bình Dương)
Vào đây để cùng tham gia học tập!
https://www.facebook.com/groups/98luyendedaihoc/


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  truongdian 
Đinh Văn Trường (14-02-2016)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
http://k2pi.net.vn/showthread.php?t=26893, k2pi, k2pi.net
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014