$\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2R}}$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số 10 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 12-01-2016, 17:41
Avatar của starlord
starlord starlord đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 6
Kinh nghiệm: 2%

Thành viên thứ: 50791
 
Tham gia ngày: Nov 2015
Bài gửi: 2
Đã cảm ơn : 0
Được cảm ơn 0 lần trong 0 bài viết

Lượt xem bài này: 519
Mặc định $\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2R}}$

1, Cho 3 số x, y, z thay đổi nhận giá trị thuộc đoạn [0,1]. Chứng minh $2(x^{3}+y^{3}+z^{3})-(x^{2}y+y^{2}z+z^{2}x)\leq 3$
2, Gọi x,y,z là khoảng cách từ miền trong $\triangle ABC$ có 3 góc nhọn đến các cạnh BC=a, CA=b, AB=c. Gọi R là bán kính đường tròn ngoại tiếp
Chứng minh $\sqrt{x}+\sqrt{y}+\sqrt{z}\leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{2R}}$
3. Chứng minh nếu a, b, c là độ dài 3 cạnh tam giác có chu vi =3 thì $3a^{2}+3b^{2}+3c^{2}+4abc\geq 13$
4. Cho x,y > 0 thỏa $x+y+2=3(\frac{x-1}{y}+\frac{y-1}{x})$
Tìm Min $(x-y)^{2}(\frac{x^{2}}{y^{4}}+\frac{y^{2}}{x^{4}}-\frac{3}{xy})$
5. Cho x,y,z > 0 thỏa x+y+z=3
tìm Min $2(x^{3}+y^{3}+z^{3})-(x^{2}+y^{2}+z^{2})+2xyz+3$
Mong các bạn chỉ dùng cách làm sơ cấp, quen thuộc, hạn chế việc dùng những phương pháp đậm tính HSG như SOS, MV hay p.q.r đối với các bài toán này


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên