[HOT] Cách khai triển đa thức 2 biến hệ số nguyên bằng casio - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 21-10-2015, 19:29
Avatar của missbay
missbay missbay đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 150
Điểm: 22 / 2059
Kinh nghiệm: 2%

Thành viên thứ: 8899
 
Tham gia ngày: Apr 2013
Bài gửi: 66
Đã cảm ơn : 70
Được cảm ơn 63 lần trong 20 bài viết

Lượt xem bài này: 2314
Mặc định [HOT] Cách khai triển đa thức 2 biến hệ số nguyên bằng casio

Sau đây là một thủ thuật khai triển đa thức 2 biến bằng máy tính bỏ túi , và có thể bạn cũng nghĩ ra được nó nếu bạn đã học qua về lim ( giới hạn ) ...


CÁCH KHAI TRIỂN ĐA THỨC 2 BIẾN HỆ SỐ NGUYÊN
BẰNG MÁY TÍNH CASIO


Tác giả : Lương Đức Nghĩa K47 Tin THPT CSP
( Tham khảo ghi rõ nguồn thay lời cảm ơn tác giả )



Yêu cầu : Vẫn là hiểu biết sơ bộ về thủ thuật CALC 1000
Bạn nào chưa biết cái này thì mình khuyên nên tìm hiểu về nó đi , ứng dụng của CALC 1000 là rất lớn vì ở đâu có $x$ thì ở đó có CALC 1000 !
Ý tưởng : Dùng lim ( giới hạn )
__________________________________________________ ____
VÍ DỤ 1 : $(x+2y-1)^2(x+y+1)$

Nhận xét : Ta thấy bậc của x , y bằng nhau và bằng 3

Bước 1 :
Tính $(x+2y-1)^2(x+y+1):x^3$ tại $y=1000$ , $x=10^{10}$
Kết quả : 1,0000005
Bước 2 :
Tính $((x+2y-1)^2(x+y+1)-x^3):x^2$ tại $y=1000$ , $x=10^{10}$
Kết quả : $4999,0008 \approx 4999=5y-1$
Bước 3 :
Tính $(x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2$ tại $x=0$ , $y=1000$
Kết quả : $3999997001=4y^3-3y+1$
Bước 4 :
Tính $((x+2y-1)^2(x+y+1)-x^3-(5y-1)x^2-4y^3+3y-1):x$ tại $x=1000$ , $y=1000$
Kết quả : $7997999=8y^2-2y-1$

Như vậy kết quả là : $(x+2y-1)^2(x+y+1)=x^3+(5y-1)x^2+(8y^2-2y-1)x+4y^3-3y+1$


VÍ DỤ 2 : $E=\frac{6x^3y+x^3+9x^2y^2-14x^2y+x^2-6xy^3-15xy^2+17xy-3x+4y^3+4y^2-5y+1}{x+2y-1}$

Nhận xét : Bậc bằng nhau và bằng 2
Ví dụ này khó hơn vì phép tính tràn màn hình , do đó ta phải dùng phương pháp " chia để trị " ( tức là chia nhỏ thành từng phần để trị )

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$
Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào C
Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $6000,999699\approx6001=6y+1$
$B = 2002999=2y^2+3y-1$
Tính $(C-(6y+1)x^2-2y^2-3y+1):x$ tại $x=1000,y=1000$ ta được $-3009998=-3y^2-10y+2$

Như vậy kết quả là $E=(6y+1)x^2-(3y^2+10y-2)x+2y^2+3y-1$


VÍ DỤ 3 : $F=\sqrt{9x^4y^6 + 6x^3y^4 - 6x^3y^3 + 6x^2y^3 + x^2y^2 - 2x^2y + x^2 + 2xy - 2x +1}$


Nhận xét : Bậc của y là cao hơn ( bằng 3 ) , do đó ta sẽ cho $y=1000$ rồi chia theo $x$

Bước 1 :
Tính $E$ tại $x=10^{10},y=1000$ lưu vào $A$
Tính $E$ tại $x=0,y=1000$ lưu vào $B$
Tính $E$ tại $x=1000,y=1000$ lưu vào $C$
Bước 2 :
Tính $A:x^2$ tại $x=10^{10}$ ta được $3000000000=3y^3$
$B=1$
Tính $(C-3y^3x^2-1):x$ tại $x=1000,y=1000$ ta được $999=y-1$

Như vậy kết quả là $F=\left|3y^3x^2+(y-1)x+1 \right|$


P/s : Like và share thay lời cảm ơn tác giả !


Chủ đề được quan tâm nhiều nhất:



Các bạn hãy share bài viết này dùm mình để nó được phổ biến rộng rãi hơn !
http://k2pi.net.vn/showthread.php?t=24135
Xin chân thành cảm ơn !


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 6 người đã cảm ơn cho bài viết này
dolaemon (21-10-2015), giangftuerk56 (21-10-2015), loved ones or (22-10-2015), quynhbi (26-10-2015), svdhv (23-10-2015), truonghuyen (17-03-2016)
  #2  
Cũ 22-10-2015, 14:27
Avatar của Piccolo San
Piccolo San Piccolo San đang ẩn
Quản Lý Chuyên Mục
Đến từ: Nghệ An
Nghề nghiệp: Sinh Viên
Sở thích: No Name
 
Cấp bậc: 23 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 571
Điểm: 230 / 5388
Kinh nghiệm: 87%

Thành viên thứ: 28551
 
Tham gia ngày: Sep 2014
Bài gửi: 690
Đã cảm ơn : 209
Được cảm ơn 230 lần trong 129 bài viết

Mặc định Re: [HOT] Cách khai triển đa thức 2 biến hệ số nguyên bằng casio

Cách hay đấy! Nhưng bấm hơi nhiều không cần thiết!


Nơi nào cho hai ta.....


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Piccolo San 
missbay (22-10-2015)
  #3  
Cũ 12-11-2015, 20:41
Avatar của dinhplus
dinhplus dinhplus đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 0
Kinh nghiệm: 0%

Thành viên thứ: 42530
 
Tham gia ngày: Feb 2015
Bài gửi: 1
Đã cảm ơn : 0
Được cảm ơn 0 lần trong 0 bài viết

Mặc định Re: [HOT] Cách khai triển đa thức 2 biến hệ số nguyên bằng casio


hay. nhưng theo mình thay quá nhiều giá trị tham số là ko cần thiết


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Chứng minh Các BĐT đa thức bậc 4 ba biến thực trên máy tính Inspectorgadget [Tài liệu] Bất đẳng thức 0 27-04-2016 12:45



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
cch khai tri, tính hệ số khai triển bằng casio
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014