Cho x,y,z >0 thỏa $x^{2}+y^{2}+z^{2}+2=x^{2}y^{2}z^{2}$ CMR: $3xyz\geq 2(x+y+z)$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 16-09-2015, 16:32
Avatar của Bùi Nguyễn Quyết
Bùi Nguyễn Quyết Bùi Nguyễn Quyết đang ẩn
Thành viên Chính thức
Đến từ: Ninh Bình
Nghề nghiệp: học sinh
Sở thích: Toán
 
Cấp bậc: 16 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 383
Điểm: 101 / 3426
Kinh nghiệm: 33%

Thành viên thứ: 30869
 
Tham gia ngày: Nov 2014
Bài gửi: 305
Đã cảm ơn : 134
Được cảm ơn 88 lần trong 68 bài viết

Lượt xem bài này: 407
Mặc định Cho x,y,z >0 thỏa $x^{2}+y^{2}+z^{2}+2=x^{2}y^{2}z^{2}$ CMR: $3xyz\geq 2(x+y+z)$

Cho x,y,z >0 thỏa $x^{2}+y^{2}+z^{2}+2=x^{2}y^{2}z^{2}$
CMR:
$3xyz\geq 2(x+y+z)$
Mọi người cho mình càng nhiều cách càng tốt


Chủ đề được quan tâm nhiều nhất:



Con người sinh ra không phải để tan biến đi như một hạt cát vô danh. Họ sinh ra để in dấu lại trên mặt đất, in dấu lại trong trái tim người khác.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 16-09-2015, 18:06
Avatar của Nhất Chi Mai
Nhất Chi Mai Nhất Chi Mai đang ẩn
Thành viên Chính thức
Đến từ: Đại học BKHN
Nghề nghiệp: Chăn bò.
Sở thích: Im lặng
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 354
Điểm: 87 / 2765
Kinh nghiệm: 17%

Thành viên thứ: 44442
 
Tham gia ngày: Apr 2015
Bài gửi: 263
Đã cảm ơn : 9
Được cảm ơn 148 lần trong 99 bài viết

Mặc định Re: Cho x,y,z >0 thỏa $x^{2}+y^{2}+z^{2}+2=x^{2}y^{2}z^{2}$ CMR: $3xyz\geq 2(x+y+z)$

LG hóa phát là xong

Không dùng LG hóa thì từ điều kiện suy ra $a^2+b^2+c^2+2abc=1$(chia cả 2 vế cho $(xyz)^2$). Dùng phép đặt sau:

$a=\frac{m}{\sqrt{(m+p)(m+n)}},b=\frac{n}{\sqrt{(n +p)(m+n)}},c=\frac{p}{\sqrt{(m+p)(p+n)}}$

Sau đó dùng AM-GM


Thiên hạ về đâu? Sao vội đi?
Bao giờ gặp nữa? Có tình chi?
- Lòng tôi theo bước người qua ấy,
Cho đến hôm nay vẫn chẳng về.
!!!


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nhất Chi Mai 
Bùi Nguyễn Quyết (16-09-2015)
  #3  
Cũ 16-09-2015, 19:41
Avatar của Bùi Nguyễn Quyết
Bùi Nguyễn Quyết Bùi Nguyễn Quyết đang ẩn
Thành viên Chính thức
Đến từ: Ninh Bình
Nghề nghiệp: học sinh
Sở thích: Toán
 
Cấp bậc: 16 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 383
Điểm: 101 / 3426
Kinh nghiệm: 33%

Thành viên thứ: 30869
 
Tham gia ngày: Nov 2014
Bài gửi: 305
Đã cảm ơn : 134
Được cảm ơn 88 lần trong 68 bài viết

Mặc định Re: Cho x,y,z >0 thỏa $x^{2}+y^{2}+z^{2}+2=x^{2}y^{2}z^{2}$ CMR: $3xyz\geq 2(x+y+z)$

Nguyên văn bởi Trường An Xem bài viết
LG hóa phát là xong

Không dùng LG hóa thì từ điều kiện suy ra $a^2+b^2+c^2+2abc=1$(chia cả 2 vế cho $(xyz)^2$). Dùng phép đặt sau:

$a=\frac{m}{\sqrt{(m+p)(m+n)}},b=\frac{n}{\sqrt{(n +p)(m+n)}},c=\frac{p}{\sqrt{(m+p)(p+n)}}$

Sau đó dùng AM-GM
Bạn trình bày rõ cho mình chút dk ko


Con người sinh ra không phải để tan biến đi như một hạt cát vô danh. Họ sinh ra để in dấu lại trên mặt đất, in dấu lại trong trái tim người khác.


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Olympic Chuyên KHTN 8/5/016 a,b,c >0 thỏa ab+bc+ca+3abc=1.Chứng minh: Trọng Nhạc Bất đẳng thức - Cực trị 2 10-05-2016 14:22



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014