Chứng minh rằng $$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 03-09-2015, 12:56
Avatar của Trần Quốc Việt
Trần Quốc Việt Trần Quốc Việt đang ẩn
Điều Hành Diễn Đàn
Đến từ: Nạn Đói 45
 
Cấp bậc: 40 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 195 / 978
Điểm: 827 / 8897
Kinh nghiệm: 13%

Thành viên thứ: 29146
 
Tham gia ngày: Nov 2014
Bài gửi: 2.483
Đã cảm ơn : 488
Được cảm ơn 2.373 lần trong 1.095 bài viết

Lượt xem bài này: 531
Mặc định Chứng minh rằng $$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$



Trần Quốc Việt


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 03-09-2015, 19:16
Avatar của Nhất Chi Mai
Nhất Chi Mai Nhất Chi Mai đang ẩn
Thành viên Chính thức
Đến từ: Đại học BKHN
Nghề nghiệp: Chăn bò.
Sở thích: Im lặng
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 354
Điểm: 87 / 2764
Kinh nghiệm: 17%

Thành viên thứ: 44442
 
Tham gia ngày: Apr 2015
Bài gửi: 263
Đã cảm ơn : 9
Được cảm ơn 148 lần trong 99 bài viết

Mặc định Re: Chứng minh rằng $$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$

Nguyên văn bởi Trần Quốc Việt Xem bài viết
Cho các số thực dương $a,b,c,x,y,z$. Chứng minh rằng
$$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$
Bổ đề: Với $x,y,z$ không âm ta có:

$\sum \sqrt{(x+y)(x+z)}\geq x+y+z+\sqrt{3(xy+yz+xz)}$

Viết lại biểu thức trên dưới dạng:

$(a+b+c)(\frac{y+z}{b+c}+\frac{x+z}{c+a}+\frac{x+y }{a+b})-2(x+y+z)$

Áp dụng Cauchy-Schwarz thì đưa về chứng minh bổ đề trên.

Bổ đề trên được chứng minh bằng S.O.S không cần dùng đến các tiêu chuẩn nào cả.

Áp dụng bổ đề trên có thể giải quyết được bài toán:

Cho $a,b,c$ không âm thỏa mãn $ab+bc+ac=3$.Chứng mnih rằng:

$\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}\geq a+b+c+3$


Thiên hạ về đâu? Sao vội đi?
Bao giờ gặp nữa? Có tình chi?
- Lòng tôi theo bước người qua ấy,
Cho đến hôm nay vẫn chẳng về.
!!!


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 26-10-2015, 14:25
Avatar của nguyenvantho
nguyenvantho nguyenvantho đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 0
Điểm: 0 / 6
Kinh nghiệm: 2%

Thành viên thứ: 30300
 
Tham gia ngày: Nov 2014
Bài gửi: 2
Đã cảm ơn : 8
Được cảm ơn 0 lần trong 0 bài viết

Mặc định Re: Chứng minh rằng $$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$

Bđt nesbit gắn tham số


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 26-10-2015, 16:42
Avatar của Nhất Chi Mai
Nhất Chi Mai Nhất Chi Mai đang ẩn
Thành viên Chính thức
Đến từ: Đại học BKHN
Nghề nghiệp: Chăn bò.
Sở thích: Im lặng
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 354
Điểm: 87 / 2764
Kinh nghiệm: 17%

Thành viên thứ: 44442
 
Tham gia ngày: Apr 2015
Bài gửi: 263
Đã cảm ơn : 9
Được cảm ơn 148 lần trong 99 bài viết

Mặc định Re: Chứng minh rằng $$\dfrac{a}{b+c}(y+z)+\dfrac{b}{c+a}(x+z)+\dfrac{c }{a+b}(x+y)\geq \sqrt{3(xy+yz+xz)}$$

Nguyên văn bởi nguyenvantho Xem bài viết
Bđt nesbit gắn tham số
Bạn này dùng thuật ngữ tùy tiện quá. Mình chưa thấy tên gọi này xuất hiện trước đây, thậm chí là trong đề gốc của bài toán này.Xin hỏi là từ đâu mà tên gọi này có?


Thiên hạ về đâu? Sao vội đi?
Bao giờ gặp nữa? Có tình chi?
- Lòng tôi theo bước người qua ấy,
Cho đến hôm nay vẫn chẳng về.
!!!


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh rằng $x^2+y^2+\frac{3}{5}xy>1$ jupiterhn9x Bất đẳng thức - Cực trị 1 22-05-2016 13:41
Chứng minh rằng $\forall a\geq 1$ ta luôn có $\frac{1}{a^{x}}+\frac{1}{a^{y}}+\frac{1}{a^{z}}\g eq \frac{x}{a^{x}}+\frac{y}{a^{y}}+\frac{z}{a^{z}}$ youngahkim Bất đẳng thức - Cực trị 1 20-05-2016 13:44
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014