[TOPIC] Thử sức Bài Toán Thông Minh-Tại sao không? - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 10-07-2015, 11:43
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: THPTL.Q.Chí (HT)
Sở thích: Lặng Lẽ
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 810
Điểm: 515 / 8993
Kinh nghiệm: 43%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.546
Đã cảm ơn : 503
Được cảm ơn 1.241 lần trong 754 bài viết

Lượt xem bài này: 597
Mặc định [TOPIC] Thử sức Bài Toán Thông Minh-Tại sao không?

Với mục đích du nhập mảng toán mới vào "k2pi", Nguyễn Minh Đức xin được lập TOPIC này để thành viên trong diễn đàn có thể tham gia thảo luận và chìm đắm vào những điều thú vị của mảng toán mang tên:
" Bài Toán Thông Minh "

Mong được sự đóng góp nhiệt tình từ mọi người, bài viết gửi lên cần đáp ứng nội quy của diễn đàn!

Bài toán mở đầu:

Bài 1: (Sắp quân trên bàn cờ)
Trong $64$ ô của bàn cờ có đánh dấu $16$ ô sao cho mỗi hàng, mỗi cột của bàn cờ có đúng $2$ ô được đánh dấu. Chứng minh rằng có thể đặt $8$ quân cờ trắng và $8$ quân cờ đen vào các ô đã đánh dấu sao cho mỗi dòng, mỗi cột của bàn cờ có đúng $1$ quân cờ trắng và 1 quân cờ đen.


Chủ đề được quan tâm nhiều nhất:



Nguyễn Minh Đức-THPT Lê Quảng Chí (Hà Tĩnh)


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Kalezim17 (10-07-2015), Piccolo San (10-07-2015), Trần Quốc Việt (10-07-2015)
  #2  
Cũ 10-07-2015, 12:29
Avatar của Trần Quốc Việt
Trần Quốc Việt Trần Quốc Việt đang ẩn
Điều Hành Diễn Đàn
Đến từ: Nạn Đói 45
 
Cấp bậc: 40 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 195 / 978
Điểm: 827 / 8875
Kinh nghiệm: 13%

Thành viên thứ: 29146
 
Tham gia ngày: Nov 2014
Bài gửi: 2.483
Đã cảm ơn : 488
Được cảm ơn 2.373 lần trong 1.095 bài viết

Mặc định Re: [TOPIC] Thử sức Bài Toán Thông Minh-Tại sao không?

Với mục đích để Nguyễn Minh Đức ôn dự tuyển thì đúng hơn


Trần Quốc Việt


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Trần Quốc Việt 
Quân Sư (11-07-2015)
  #3  
Cũ 10-07-2015, 12:36
Avatar của Piccolo San
Piccolo San Piccolo San đang ẩn
Quản Lý Chuyên Mục
Đến từ: Nghệ An
Nghề nghiệp: Sinh Viên
Sở thích: No Name
 
Cấp bậc: 23 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 571
Điểm: 230 / 5363
Kinh nghiệm: 87%

Thành viên thứ: 28551
 
Tham gia ngày: Sep 2014
Bài gửi: 690
Đã cảm ơn : 209
Được cảm ơn 230 lần trong 129 bài viết

Mặc định Re: [TOPIC] Thử sức Bài Toán Thông Minh-Tại sao không?

Nguyên văn bởi Quân Sư Xem bài viết

Bài 1: (Sắp quân trên bàn cờ)
Trong $64$ ô của bàn cờ có đánh dấu $16$ ô sao cho mỗi hàng, mỗi cột của bàn cờ có đúng $2$ ô được đánh dấu. Chứng minh rằng có thể đặt $8$ quân cờ trắng và $8$ quân cờ đen vào các ô đã đánh dấu sao cho mỗi dòng, mỗi cột của bàn cờ có đúng $1$ quân cờ trắng và 1 quân cờ đen.
Câu đầu:
Ta xuất phát từ $1$ ô đánh dấu tới ô đánh dấu cùng hàng, tiếp theo tôi ô đánh dấu cùng cột, tiếp theo lại tới ô đánh dấu cùng hàng... nghĩa là thay đổi liên tục hướng đi theo hàng và cột tới các ô đã đánh dấu. Ta dừng lại khi tới ô đầu tiên thuộc đường gấp khúc ta đang đi. Gọi ô đó là $M.$

Ta chứng minh ô M chỉ có thể là ô xuất phát của đường gấp khúc đang đi. Giả sử M không phải là ô xuất phát. Dĩ nhiên ô M có 1 ô đánh dấu cùng hàng, gọi đó là A, một ô đánh dấu cùng cột, gọi đó là B. Do M không là ô xuất phát nên A và B cũng thuộc đường gấp khúc đang xét. Để tới M không có cách nào khác là phải từ A hoặc từ B. Do vậy M không thể là ô ta gặp đầu tiên của đường gấp khúc đang xét. Mâu thuẫn với giả thiết về M đặt ra ở trên. Vậy M là ô xuất phát.

Đường gấp khúc kín này gồm một số đoạn thẳng (dọc, ngang xen kẽ) nên gồm một số chẵn ô đánh đấu, 2 ô liên tiếp là trên cùng một dòng hay cùng một cột. Đánh số 1 từ ô xuất phát, cứ ô lẻ đặt quân cờ đen, ô chẵn đặt quân cờ trắng thì đường gấp khúc kín này thoả mãn: mỗi dòng, mỗi cột có đúng 1 quân cờ trắng 1 quân cờ đen.

Nếu đường đi chưa hết các ô đánh dấu, ta bắt đầu lại từ 1 ô nào đó chưa đặt quân cờ và đi 1 đường gấp khúc kín như trên, rồi lại đặt các quân cờ trắng, đen theo cách trên. Cứ như vậy ta được một số hữu hạn đường gấp khúc kín đi hết 16 ô đánh dấu thoả mãn điều kiện bài toán: mỗi dòng, mỗi cột có đúng 1 quân cờ trắng, 1 quân cờ đen.

Hai đường gấp khúc này không thể có chung 1 ô đánh dấu, vì bắt đầu từ ô đó suy ra 2 đường gấp khúc là trùng nhau.

Chẳng hiều đề và lời giải luôn . Có $16$ ô, Thì sắp mỗi cột một con đen và trắng thỏa mãn bài toán là được chớ cần chi chứng minh???
Vẽ được hình vào bài làm.... Chúng ta có thể sắp như trên.... là xong phim rồi
Hình hơi xấu!

Click the image to open in full size.


Nơi nào cho hai ta.....


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
New Moon (17-07-2015), Quân Sư (11-07-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Sách HH Không Gian ( Trần Thành Minh ) Hồng Vinh [Tài liệu] Hình học Không Gian 1 05-01-2017 23:54
Giải toán Hình học không gian qua các đề thi thử THPT Quốc Gia 2016 FOR U [Tài liệu] Hình học Không Gian 0 02-06-2016 13:14
Bài toán hay: Cho tam giác ABC nội tiếp đường tròn tâm O, có hai đường cao BE và CF cắt nhau tại H(5;5). EF cắt BC tại P(8;0). M(9/2;7/2). Tìm tọa độ các đỉnh của tam giác ABC. (Liệu có thể chứng minh PH dobinh1111 Hình giải tích phẳng Oxy 0 03-05-2016 12:44
Bài toán khó: Cho tam giác ABC co hai đường cao BE và CF cắt nhau tại H. EF cắt BC tại P, gọi M là trung điểm của BC. Chứng minh rằng PH vuông góc với AM. dobinh1111 Hình học phẳng 0 03-05-2016 12:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014