$\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải phương trình Vô tỷ

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 11-06-2015, 11:06
Avatar của ❁◕ ‿ ◕❁
❁◕ ‿ ◕❁ ❁◕ ‿ ◕❁ đang ẩn
Thành viên Chính thức
Đến từ: ✪ .✪
Nghề nghiệp: Học sinh
Sở thích: ◖♪_♪|◗
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 160
Điểm: 24 / 1427
Kinh nghiệm: 40%

Thành viên thứ: 31709
 
Tham gia ngày: Nov 2014
Bài gửi: 72
Đã cảm ơn : 35
Được cảm ơn 2 lần trong 2 bài viết

Lượt xem bài này: 417
Mặc định $\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$



(✖╭╮✖) Luck will be come to me if I tried ❁◕ ‿ ◕❁


CỐ╭⌒╮╭⌒ ●TÌM ⌒╮
╭⌒ ⌒╮GẮNG︶⌒~ ⌒TÒI

╱◥█◣ ╱◥█◣
╱◥█◣ 田︱田︱╬╬╬╬╬╬╬╬╬╬╬
♫ ♫ ①⑧⑧⑨⑨♫


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 11-06-2015, 16:25
Avatar của letunglam1809
letunglam1809 letunglam1809 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 5
Điểm: 1 / 50
Kinh nghiệm: 21%

Thành viên thứ: 28814
 
Tham gia ngày: Oct 2014
Bài gửi: 4
Đã cảm ơn : 1
Đã được cảm ơn 1 lần trong 1 bài viết

Mặc định Re: $\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$

Bạn cứ bình phương nó lên 2 lần được phương trình bậc 4, có nhân tử $x^2-23x+47$ nên phân tích được.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 11-06-2015, 17:00
Avatar của ❁◕ ‿ ◕❁
❁◕ ‿ ◕❁ ❁◕ ‿ ◕❁ đang ẩn
Thành viên Chính thức
Đến từ: ✪ .✪
Nghề nghiệp: Học sinh
Sở thích: ◖♪_♪|◗
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 160
Điểm: 24 / 1427
Kinh nghiệm: 40%

Thành viên thứ: 31709
 
Tham gia ngày: Nov 2014
Bài gửi: 72
Đã cảm ơn : 35
Được cảm ơn 2 lần trong 2 bài viết

Mặc định Re: $\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$

Nguyên văn bởi letunglam1809 Xem bài viết
Bạn cứ bình phương nó lên 2 lần được phương trình bậc 4, có nhân tử $x^2-23x+47$ nên phân tích được.
@@ bước đường cùng
BẠn có lời giải đẹp hơn ko


(✖╭╮✖) Luck will be come to me if I tried ❁◕ ‿ ◕❁


CỐ╭⌒╮╭⌒ ●TÌM ⌒╮
╭⌒ ⌒╮GẮNG︶⌒~ ⌒TÒI

╱◥█◣ ╱◥█◣
╱◥█◣ 田︱田︱╬╬╬╬╬╬╬╬╬╬╬
♫ ♫ ①⑧⑧⑨⑨♫


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 12-06-2015, 00:37
Avatar của PVTHE-HB
PVTHE-HB PVTHE-HB đang ẩn
Thành viên Chính thức
Đến từ: HOÀ BÌNH
Sở thích: Bóng đá
 
Cấp bậc: 12 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 277
Điểm: 56 / 2414
Kinh nghiệm: 9%

Thành viên thứ: 40975
 
Tham gia ngày: Dec 2014
Bài gửi: 170
Đã cảm ơn : 7
Được cảm ơn 99 lần trong 67 bài viết

Mặc định Re: $\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$

Nguyên văn bởi ❁◕ ‿ ◕❁ Xem bài viết
$\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{3x^2-6x+19}$
ĐK:
\[\begin{array}{l}
x \ge 2\\
\;\quad \sqrt {{x^2} + x - 6} + 3\sqrt {x - 1} = \sqrt {3{x^2} - 6x + 19} \\
\Leftrightarrow 3\sqrt {(x - 2)(x - 1)(x + 3)} = {x^2} - 8x + 17
\end{array}\]
Đặt
\[\begin{array}{l}
a = \sqrt {(x - 1)(x + 3)} ;\;b = \sqrt {x - 2} \;(a,b \ge 0)\\
\Rightarrow {x^2} - 8x + 17 = {a^2} - 10{b^2}\\
(2) \Rightarrow {a^2} - 3{\rm{a}}b - 10{b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}
a = 5b\\
a = - 2b
\end{array} \right.
\end{array}\]
Đến đây bạn giải tiếp (chú ý bài này giống bài bpt trong đề thi minh họa của Bộ GD-thực chất là đưa về dạng đẳng cấp bậc 2)


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  PVTHE-HB 
❁◕ ‿ ◕❁ (12-06-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014