Cho hìng tứ diện ABCD có độ dài các cạnh AB,CD lớn hơn 1 còn các cạnh còn lại nhỏ hơn 1...CMR :$AF\leq \sqrt{1-\frac{CD^{2}}{4}}$
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN HÌNH HỌC HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hình học không gian


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 05-12-2012, 00:06
Avatar của 000000
000000 000000 đang ẩn
Thành viên Chính thức
Đến từ: mù-cang-chải
Nghề nghiệp: trưởng bản
Sở thích: đánh nhau
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 5
Điểm: 1 / 87
Kinh nghiệm: 21%

Thành viên thứ: 1448
 
Tham gia ngày: Nov 2012
Bài gửi: 4
Đã cảm ơn : 1
Được cảm ơn 3 lần trong 2 bài viết

Lượt xem bài này: 2463
Mặc định Cho hìng tứ diện ABCD có độ dài các cạnh AB,CD lớn hơn 1 còn các cạnh còn lại nhỏ hơn 1...CMR :$AF\leq \sqrt{1-\frac{CD^{2}}{4}}$

Cho hìng tứ diện ABCD có độ dài các cạnh AB,CD lớn hơn 1 còn các cạnh còn lại nhỏ hơn 1.Gọi H là hình chiếu cửaA lên mặt phẳng BCD .F,K lần lướt là hình chiếu của A,B lên CD .
Chứng minh: $AF\leq \sqrt{1-\frac{CD^{2}}{4}}$


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Hà Nguyễn (05-12-2012), Phạm Kim Chung (05-12-2012)
  #2  
Cũ 05-12-2012, 01:05
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 83 / 836
Điểm: 555 / 15704
Kinh nghiệm: 44%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.667
Đã cảm ơn : 1.868
Được cảm ơn 6.130 lần trong 1.207 bài viết

Mặc định

Nguyên văn bởi 000000 Xem bài viết
Cho hìng tứ diện ABCD có độ dài các cạnh AB,CD lớn hơn 1 còn các cạnh còn lại nhỏ hơn 1.Gọi H là hình chiếu cửaA lên mặt phẳng BCD .F,K lần lướt là hình chiếu của A,B lên CD .
Chứng minh: $AF\leq \sqrt{1-\frac{CD^{2}}{4}}$


Gọi $M$ là trung điểm cạnh $CD$. Ta có :
$AM^2=\frac{2(AD^2+AC^2)-CD^2}{4}$
Mà $AD<1; AC<1$, nên :
$AM^2=\frac{2(AD^2+AC^2)-CD^2}{4} < \frac{2(1+1)-CD^2}{4}=1-\frac{CD^2}{4}$
Do đó $ AF\leq AM <\sqrt{1-\frac{CD^2}{4}} $

Nhận xét : Bài toán này không biết cho nhiều giả thiết vậy để làm gì ?
Hơn nữa, muốn chứng minh :$ AF\leq \sqrt{1-\frac{CD^2}{4}} $ như yêu cầu bài toán thì giả thiết là :"...các cạnh $AD,AC$ có độ dài nhỏ hơn hoặc bằng $1$ .


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 05-12-2012, 10:04
Avatar của 000000
000000 000000 đang ẩn
Thành viên Chính thức
Đến từ: mù-cang-chải
Nghề nghiệp: trưởng bản
Sở thích: đánh nhau
 
Cấp bậc: 1 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 5
Điểm: 1 / 87
Kinh nghiệm: 21%

Thành viên thứ: 1448
 
Tham gia ngày: Nov 2012
Bài gửi: 4
Đã cảm ơn : 1
Được cảm ơn 3 lần trong 2 bài viết

Mặc định

Nguyên văn bởi Phạm Kim Chung Xem bài viết


Gọi $M$ là trung điểm cạnh $CD$. Ta có :
$AM^2=\frac{2(AD^2+AC^2)-CD^2}{4}$
Mà $AD<1; AC<1$, nên :
$AM^2=\frac{2(AD^2+AC^2)-CD^2}{4} < \frac{2(1+1)-CD^2}{4}=1-\frac{CD^2}{4}$
Do đó $ AF\leq AM <\sqrt{1-\frac{CD^2}{4}} $

Nhận xét : Bài toán này không biết cho nhiều giả thiết vậy để làm gì ?
Hơn nữa, muốn chứng minh :$ AF\leq \sqrt{1-\frac{CD^2}{4}} $ như yêu cầu bài toán thì giả thiết là :"...các cạnh $AD,AC$ có độ dài nhỏ hơn hoặc bằng $1$ .
Còn câu b nựa là :tính độ dài các cạnh của tứ diện sao cho tích $AH.BK.CD$ đạt giá trị lớn nhất,nhờ thầy giải luôn a.


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 05-12-2012, 16:10
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 83 / 836
Điểm: 555 / 15704
Kinh nghiệm: 44%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.667
Đã cảm ơn : 1.868
Được cảm ơn 6.130 lần trong 1.207 bài viết

Mặc định

Nguyên văn bởi 000000 Xem bài viết
Còn câu b nựa là :tính độ dài các cạnh của tứ diện sao cho tích $AH.BK.CD$ đạt giá trị lớn nhất,nhờ thầy giải luôn a.
Nếu bài này với giả thiết cách cạnh còn lại nhỏ hơn hoặc bằng 1 thì mới có bài toán này !
Để ý là :
$ AH \leq AM \leq \sqrt{1-\frac{CD^2}{4}} $

Làm tương tự như bài trước sẽ có :
$ BK \leq \sqrt{1-\frac{CD^2}{4}} $

Do đó : $AH.BK.CD \leq (1-\frac{CD^2}{4}).CD=\frac{1}{4}(2-CD)(2+CD).CD\leq \frac{3}{4}(2-CD).CD \leq \frac{3}{4} $

Dấu "=" xảy ra $\Leftrightarrow CD=1$

Thay vào các đẳng thức để tìm độ dài các cạnh còn lại !


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Phạm Kim Chung 
Quân Sư (27-02-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$afleq, 1gọi, độ, cạnh, của, cửaa, chiếu, cho tu dien abcd co canh nho hon 1, diện, hìng, hình, lại, lần, lớn, lướt, mặt, nhỏ, phẳng, sqrt1fr, sqrt1fraccd24$
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014