Đề khảo sát chất lượng đội tuyển học sinh giỏi Tỉnh năm 2012-2013 - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI HỌC SINH GIỎI MÔN TOÁN giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi HSG Toán 11

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 01-12-2012, 12:51
Avatar của Phạm Kim Chung
Phạm Kim Chung Phạm Kim Chung đang ẩn
Sáng lập: K2pi -Toán THPT
Đến từ: Nghệ An
Nghề nghiệp: GV THPT
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 82 / 829
Điểm: 544 / 14506
Kinh nghiệm: 16%

Thành viên thứ: 1
 
Tham gia ngày: Dec 2011
Bài gửi: 1.632
Đã cảm ơn : 1.861
Được cảm ơn 6.065 lần trong 1.187 bài viết

Lượt xem bài này: 3476
Mặc định Đề khảo sát chất lượng đội tuyển học sinh giỏi Tỉnh năm 2012-2013

ĐỀ KIỂM TRA ĐỘI TUYỂN HSG NĂM HỌC 2012-2013
MÔN: Toán lớp 12
(Thời gian làm bài: 180 phút không kể thời gian giao đề)
Chú ý: Thí sinh không được sử dụng máy tính bỏ túi

Câu 1. 1). Giải phương trình: $2x^2 - x - \frac{1}{8} =
\sqrt[3]{\frac{9}{8x^2} + \frac{1}{x} - 1}$
2). Giải hệ phương trình: $\left\{ {{\begin{array}{*{20}c}
{(y + 1)^2 + y\sqrt {y^2 + 1} = x + \frac{3}{2}} \\
{x + \sqrt {x^2 - 2x + 5} = 1 + 2\sqrt {2x - 4y + 2} } \\
\end{array} }} \right.$

Câu 2. Tìm tất cả các giá trị của $m$ để bất phương trình sau có nghiệm :
\[
m\left( {\sqrt {1 - x} + 1} \right) + x\left( {\sqrt {1 + x} + 1} \right)
\ge 0
\]

Câu 3. Cho dãy số được xác định bởi: $\left\{ {\begin{array}{*{20}{c}}
{{u_1} = 5}\\
{{u_{n + 1}} = \frac{{u_n^2 + 2{u_n} + 4}}{6}}
\end{array}} \right.$

Đặt $v_n = \sum\limits_{k = 1}^n {\frac{1}{u_k + 4}} $ . Tìm giới hạn : $\mathop {\lim }\limits_{n \to \infty } v_n $

Câu 4. Cho các số thực dương $a,b,c$ thỏa mãn :$a^2 + b^2 + c^2
= 3$ . Chứng minh rằng: \[
\frac{1}{1 + a^2b^2} + \frac{1}{1 + b^2c^2} + \frac{1}{1 + c^2a^2} \ge
\frac{9}{2(a + b + c)}
\]

Câu 5.
a). Cho hình chóp $S.ABC$ với thể tích $V$. Gọi $M$ là trung điểm cạnh $BC$. Các điểm $K$ và $G$ lần lượt là trọng tâm các tam giác $SAB$ và $SAC$. Tính theo $V$ thể tích khối tứ diện $AMGK$.
b). Cho tứ diện $ABCD, M $ là điểm nằm bên trong tứ diện, các đường thẳng $AM, BM, CM$ và $DM$ lần lượt cắt các mặt $(BCD), (ACD), (ABD)$ và $(ABC)$ tại ${A_1},\,{B_1},\,{C_1},\,{D_1}$ . Tìm vị trí của điểm $M$ để biểu thức sau đạt giá trị nhỏ nhất:
\[
P = \sqrt {\frac{AM}{MA_1 }} + \sqrt {\frac{BM}{MB_1 }} + \sqrt
{\frac{CM}{MC_1 }} + \sqrt {\frac{DM}{MD_1 }} .
\]
Câu 6. Gọi $\alpha ,\beta ,\gamma $ lần lượt là góc giữa đường thẳng $\Delta $ và các đường thẳng chứa các cạnh $BC, CA, AB$ của tam giác đều $ABC.$ Chứng minh rằng: $${\sin ^2}\alpha .{\sin ^2}\beta .{\sin ^2}\gamma + {\cos ^2}\alpha .{\cos ^2}\beta .{\cos ^2}\gamma = \frac{1}{{16}}$$
.


-----------------------------------Hết------------------------------------


Chủ đề được quan tâm nhiều nhất:

Bạn có thể tải file đính kèm mà không cần phải ĐĂNG KÝ THÀNH VIÊN

Kiểu file: pdf khao sat chat luong doi tuyen hsg tinh 2013.pdf‎ (219,2 KB, 436 lượt tải )


Never study to be successful, study for self efficiency. Don’t run behind success. Follow behind excellence, success will come all way behind you.


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 9 người đã cảm ơn cho bài viết này
Hà Nguyễn (01-12-2012), Hiệp sỹ bóng đêm (01-12-2012), hoaboconganh96 (03-01-2013), kienqb (01-12-2012), Lê Đình Mẫn (01-12-2012), Mạnh (01-12-2012), Miền cát trắng (01-12-2012), Nắng vàng (01-12-2012), saxxd10 (14-02-2013)
  #2  
Cũ 01-12-2012, 13:06
Avatar của Nắng vàng
Nắng vàng Nắng vàng đang ẩn
Thành viên Danh dự
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 554
Điểm: 215 / 8383
Kinh nghiệm: 17%

Thành viên thứ: 849
 
Tham gia ngày: Oct 2012
Bài gửi: 645
Đã cảm ơn : 1.578
Được cảm ơn 1.021 lần trong 359 bài viết

Mặc định

Câu hệ phương trình là em chế hồi ở boxmath.vn :)
http://boxmath.vn/4rum/f23/giai-he-p...6/index28.html


Thinking out of the box


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nắng vàng 
hoaboconganh96 (03-01-2013)
  #3  
Cũ 01-12-2012, 13:56
Avatar của FOR U
FOR U FOR U đang ẩn
Quân sư quạt mo...
 
Cấp bậc: 20 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 475
Điểm: 156 / 8329
Kinh nghiệm: 3%

Thành viên thứ: 2
 
Tham gia ngày: Dec 2011
Bài gửi: 468
Đã cảm ơn : 278
Được cảm ơn 992 lần trong 306 bài viết

Mặc định Link đến các bài :



Hãy tìm kiếm trước khi đặt câu hỏi !


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
Hà Nguyễn (01-12-2012), hoaboconganh96 (03-01-2013), Miền cát trắng (01-12-2012), tkvn159 (17-04-2013)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
Đề khảo sát chất lượng THPT tỉnh Phú Thọ New Moon Đề thi THPT Quốc Gia | trườngTHPT 2 08-05-2016 15:43
Đề khảo sát chất lượng học sinh lớp 12 năm 2015 2016 của tỉnh phú thọ! ngocthu Đề thi THPT Quốc Gia | trườngTHPT 2 23-04-2016 21:16



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
Đề, đề, đội, chất, giỏi, học, khảo, lượng, năm, sát, sinh, tỉnh, tuyển
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014