Tìm GTLN của biểu thức - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 06-03-2015, 20:56
Avatar của mu8991
mu8991 mu8991 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 2 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 37
Điểm: 4 / 334
Kinh nghiệm: 50%

Thành viên thứ: 33252
 
Tham gia ngày: Dec 2014
Bài gửi: 14
Đã cảm ơn : 5
Đã được cảm ơn 2 lần trong 1 bài viết

Lượt xem bài này: 552
Mặc định Tìm GTLN của biểu thức



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Nhữ Phong (06-03-2015), toisethanhcong (06-03-2015)
  #2  
Cũ 06-03-2015, 23:27
Avatar của Nhữ Phong
Nhữ Phong Nhữ Phong đang ẩn
Thành viên Chính thức
Đến từ: ninh binh
Nghề nghiệp: hoc sinh
Sở thích: toan
 
Cấp bậc: 17 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 419
Điểm: 121 / 5101
Kinh nghiệm: 77%

Thành viên thứ: 16741
 
Tham gia ngày: Oct 2013
Bài gửi: 363
Đã cảm ơn : 157
Được cảm ơn 346 lần trong 199 bài viết

Mặc định Re: Tìm GTLN của biểu thức

Nguyên văn bởi mu8991 Xem bài viết
Tìm max của biểu thức sau với $xyz\geq 1$

P=$\frac{1}{\sqrt[3]{2x +y+6}}+\frac{1}{\sqrt[3]{2y+z+6}}+\frac{1}{\sqrt[3]{2z+y+6}}$
Từ giả thiết suy ra :$$\begin{cases}
& \text{ } x+y+z\geq 3\sqrt[3]{xyz}=3 \\
& \text{ } xy+yz+zx\geq \sqrt{3xyz(x+y+z)}\geq \sqrt{3(x+y+z)}
\end{cases}$$
Trước tiên ta sẽ chứng minh :
$$\frac{1}{2x+y+6}+\frac{1}{2y+z+6}+\frac{1}{2z+x+ 6}\leq \frac{1}{3}(*)$$
$$\Leftrightarrow \frac{2x+y}{2x+y+6}+\frac{2y+z}{2y+z+6}+\frac{2z+x }{2z+x+6}\geq 1$$
Áp dụng bất đẳng thức Cauchy=Schwarz ta có:
$$VT\geq \frac{9(x+y+z)^{2}}{5(x+y+z)^{2}-6(xy+yz+zx)+18(x+y+z)}$$
$$\geq \frac{9(x+y+z)^{2}}{5(x+y+z)^{2}-6\sqrt{3(x+y+z)}+18(x+y+z)}$$
Do đó dễ dàng ta chứng minh được $VT\geq 1 $ suy ra (*) được chứng minh:
Nên bấy giwof chỉ cần áp dụng AM-GM là ta thu được max=$\frac{3\sqrt[3]{9^{2}}}{9}$



Learn from yesterday, live for today, hope for tomorrow and the important thing is not to stop questioning


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Nhữ Phong 
mu8991 (08-03-2015)
  #3  
Cũ 07-03-2015, 20:11
Avatar của mu8991
mu8991 mu8991 đang ẩn
Thành viên Chính thức
 
Cấp bậc: 2 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 37
Điểm: 4 / 334
Kinh nghiệm: 50%

Thành viên thứ: 33252
 
Tham gia ngày: Dec 2014
Bài gửi: 14
Đã cảm ơn : 5
Đã được cảm ơn 2 lần trong 1 bài viết

Mặc định Re: Tìm GTLN của biểu thức

Có cách giải nào khác đơn giản hơn ko nhỉ


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tìm GTNN biểu thức : $$P=\frac{a}{b^3+c^3}+\frac{b}{c^3+a^3}-\frac{9}{a+b+2c+2}$$ duyanh175 Bất đẳng thức - Cực trị 3 30-05-2016 11:43
Tìm GTLN biểu thức : $$P=ab+bc+ca$$ duyanh175 Bất đẳng thức - Cực trị 2 18-05-2016 13:20
Tìm giá trị nhỏ nhất của biểu thức $P=\frac{bc}{a(b+2c)}+\frac{2ca}{b(c+a)}+\frac{2ab }{c(2a+b)}$ youngahkim Bất đẳng thức - Cực trị 1 24-04-2016 23:33
Tìm GTLN của biểu thức $P=8xy+24xz+84yz-21(x^2+4)\sqrt{(x+y+z)^2-1}$ letrungtin Bất đẳng thức - Cực trị 0 21-04-2016 12:43
Tìm GTLN P=$a+b+c-\frac{1}{2} (\sqrt[3]{\frac{a^3+b^3}{2}} + \sqrt[3]{\frac{b^3+c^3}{2}} + \sqrt[3]{\frac{c^3+a^3}{2}})$ shk202 Bất đẳng thức - Cực trị 2 20-03-2015 12:38



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014