Cho $a,b,c$ là các số thực không âm và không có hai số nào đồng thời bằng 0. - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 10-02-2015, 00:22
Avatar của Shirunai Okami
Shirunai Okami Shirunai Okami đang ẩn
$\Huge\mathfrak{POPEYE}$
Đến từ: HNUE
Nghề nghiệp: Tháo Giầy
Sở thích: Shingeki no Kyojin
 
Cấp bậc: 21 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 510
Điểm: 180 / 6519
Kinh nghiệm: 41%

Thành viên thứ: 15713
 
Tham gia ngày: Aug 2013
Bài gửi: 541
Đã cảm ơn : 336
Được cảm ơn 905 lần trong 296 bài viết

Lượt xem bài này: 386
Mặc định Cho $a,b,c$ là các số thực không âm và không có hai số nào đồng thời bằng 0.

Cho $a,b,c$ là các số thực không âm và không có hai số nào đồng thời bằng 0. Chứng minh rằng
$$\dfrac{1}{a^2+ab+b^2}+\dfrac{1}{b^2+bc+c^2}+
\dfrac{1}{c^2+ca+a^2}\geqslant \dfrac{1}{3(ab+bc+ca)}+\dfrac{8}{(a+b+c)^2}$$


Chủ đề được quan tâm nhiều nhất:




Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 29-06-2015, 17:45
Avatar của Nhất Chi Mai
Nhất Chi Mai Nhất Chi Mai đang ẩn
Thành viên Chính thức
Đến từ: Đại học BKHN
Nghề nghiệp: Chăn bò.
Sở thích: Im lặng
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 354
Điểm: 87 / 2771
Kinh nghiệm: 17%

Thành viên thứ: 44442
 
Tham gia ngày: Apr 2015
Bài gửi: 263
Đã cảm ơn : 9
Được cảm ơn 148 lần trong 99 bài viết

Mặc định Re: Cho $a,b,c$ là các số thực không âm và không có hai số nào đồng thời bằng 0.

Đặt $p=a+b+c,q=ab+bc+ac,r=abc$.Chuẩn hóa $p=1$. Sau khai triển thì dễ thấy $f(r)$ là hàm bậc nhất.Theo định lý ABC ta chỉ cần kiểm tra BĐT trong 2 TH là có 1 số bằng không và 2 số bằng nhau.

Cách khác:
Vẫn giữ nguyên cách đặt trên thì BĐT tương đương.

$f(r)=r(24q+1)+24q^4-14q^3-10q^2-3q\geq 0$

BĐT này đúng nếu $q\leq \frac{1}{4}\Leftrightarrow r\geq 0$

Ngược lại ta sẽ chứng minh thông qua BĐT phụ:

$\frac{1}{a^2+ab+b^2}+\frac{1}{b^2+bc+c^2}+\frac{1 }{a^2+ac+c^2}\geq \frac{21}{2(a^2+b^2+c^2)+5(ab+bc+ac)}$.


Thiên hạ về đâu? Sao vội đi?
Bao giờ gặp nữa? Có tình chi?
- Lòng tôi theo bước người qua ấy,
Cho đến hôm nay vẫn chẳng về.
!!!


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$ thỏa mãn $a+b+c \geq 0$ Trường An Bất đẳng thức - Cực trị 3 21-06-2016 03:05
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Cho các số thực không âm $x,y,z$ thỏa mãn $xy+yz+xz \neq 0$ Trường An Bất đẳng thức - Cực trị 4 14-06-2016 14:34
Giải bài toán Hình Học Không Gian bằng phương pháp tọa độ hóa Ẩn Số [Tài liệu] Hình học Không Gian 1 31-05-2015 22:57



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014