Cho dãy $u_{n}$ thỏa mãn $\left\{\begin{matrix} u_{1}=\frac{1}{2} & & \\ u_{n+1}=\frac{u_{n}^{2}}{u_{n}^{2}-u_{n}+1} & & \end{matrix}\right.$ Chứng minh : $\sum_{n}^{i=1}u_{n}<1$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN GIẢI TÍCH HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Dãy số - Giới hạn

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 29-01-2015, 12:49
Avatar của Kalezim17
Kalezim17 Kalezim17 đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
Nghề nghiệp: Học sinh
Sở thích: Toán-Vật lý
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 470
Điểm: 152 / 4714
Kinh nghiệm: 83%

Thành viên thứ: 27689
 
Tham gia ngày: Jul 2014
Bài gửi: 458
Đã cảm ơn : 757
Được cảm ơn 272 lần trong 190 bài viết

Lượt xem bài này: 542
Mặc định Cho dãy $u_{n}$ thỏa mãn $\left\{\begin{matrix} u_{1}=\frac{1}{2} & & \\ u_{n+1}=\frac{u_{n}^{2}}{u_{n}^{2}-u_{n}+1} & & \end{matrix}\right.$ Chứng minh : $\sum_{n}^{i=1}u_{n}<1$

Cho dãy $u_{n}$ thỏa mãn $\left\{\begin{matrix}
u_{1}=\frac{1}{2} & & \\
u_{n+1}=\frac{u_{n}^{2}}{u_{n}^{2}-u_{n}+1} & &
\end{matrix}\right.$
Chứng minh : $\sum_{i=1}^{n}u_{n}<1$


Chủ đề được quan tâm nhiều nhất:



http://vatliphothong.vn/f/


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Kalezim17 
Quân Sư (29-01-2015)
  #2  
Cũ 29-01-2015, 16:09
Avatar của Quốc Thắng
Quốc Thắng Quốc Thắng đang ẩn
materazzi
Đến từ: TP. HCM
Nghề nghiệp: Xe ôm
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 232
Điểm: 42 / 2535
Kinh nghiệm: 31%

Thành viên thứ: 22030
 
Tham gia ngày: Mar 2014
Bài gửi: 127
Đã cảm ơn : 74
Được cảm ơn 244 lần trong 91 bài viết

Mặc định Re: Cho dãy $u_{n}$ thỏa mãn $\left\{\begin{matrix} u_{1}=\frac{1}{2} & & \\ u_{n+1}=\frac{u_{n}^{2}}{u_{n}^{2}-u_{n}+1} & & \end{matrix}\right.$ Chứng minh : $\sum_{n}^{i=1}u_{n}<1$

Nguyên văn bởi Kalezim16 Xem bài viết
Cho dãy $u_{n}$ thỏa mãn $\left\{\begin{matrix}
u_{1}=\frac{1}{2} & & \\
u_{n+1}=\frac{u_{n}^{2}}{u_{n}^{2}-u_{n}+1} & &
\end{matrix}\right.$
Chứng minh : $\sum_{i=1}^{n}u_{\fbox{n}}<1$
Là chứng minh
$$ \sum_{i=1}^{n}u_{\fbox{i}}<1 $$
mới phải chứ nhỉ ?

Đặt $ \displaystyle a_n = \frac{1}{u_n} \ ; \ n=1,2,3, \cdots $ .

Từ giả thiết đề bài có $ \displaystyle a_1 = 2 \ ; \ a_{n+1} = a_{n}^{2} - a_n +1 \ ; \ n=1,2,3, \cdots $.

Đầu tiên bằng quy nạp , dễ thấy rằng $ \displaystyle a_n >1 \ ; \ \forall n \in \mathbb{N^*} $.

Cần chứng minh
$$ \sum_{i=1}^{n} \frac{1}{a_i} < 1 $$
Ta có
$$ a_{n+1} - 1 = a_n \left( a_n -1 \right) $$
Suy ra
$$ \frac{1}{a_{n+1}-1} = \frac{a_n - \left( a_n -1 \right)}{a_n \left( a_n -1 \right)} = \frac{1}{a_{n} -1} - \frac{1}{a_n} $$
Suy ra
$$ \frac{1}{a_n} = \frac{1}{a_n - 1} - \frac{1}{a_{n+1} - 1} $$
Lúc đó
$$ \sum_{i=1}^{n} \frac{1}{a_i} = 1- \frac{1}{a_{n+1} - 1} < 1 $$
Đó là điều cần phải chứng minh .


Con về chẳng thấy mẹ đâu
Nắng vàng mẹ chẳng gội đầu bên sân
Ngoài kia hoa nở thật gần
Ngó vào khe cửa thì thầm: Mẹ ơi!…


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
caotientrung (29-01-2015), Shirunai Okami (29-01-2015), Trần Quốc Việt (29-01-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014