Giải hệ phương trình : $\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

TOÁN TRUNG HỌC PHỔ THÔNG

giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TTLT THANH LONG giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TOÁN THPT giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   TOÁN TRUNG HỌC PHỔ THÔNG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI TOÁN ĐẠI SỐ HSG giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Hệ phương trình


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
  #1  
Cũ 24-01-2015, 23:31
Avatar của $LQ\oint_{N}^{T}$
$LQ\oint_{N}^{T}$ $LQ\oint_{N}^{T}$ đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
Nghề nghiệp: hunter
Sở thích: ngủ
 
Cấp bậc: 20 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 491
Điểm: 166 / 6132
Kinh nghiệm: 66%

Thành viên thứ: 27839
 
Tham gia ngày: Jul 2014
Bài gửi: 500
Đã cảm ơn : 143
Được cảm ơn 377 lần trong 276 bài viết

Lượt xem bài này: 2390
Mặc định Giải hệ phương trình : $\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Giải hệ phương trình :

$\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Đừng có sử dụng hàm số nha . Không e lại k hiểu dc




Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  $LQ\oint_{N}^{T}$ 
katarina (02-02-2015)
  #2  
Cũ 24-01-2015, 23:36
Avatar của Trần Quốc Việt
Trần Quốc Việt Trần Quốc Việt đang ẩn
Điều Hành Diễn Đàn
Đến từ: Nạn Đói 45
 
Cấp bậc: 40 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 195 / 978
Điểm: 827 / 11324
Kinh nghiệm: 13%

Thành viên thứ: 29146
 
Tham gia ngày: Nov 2014
Bài gửi: 2.483
Đã cảm ơn : 489
Được cảm ơn 2.375 lần trong 1.096 bài viết

Mặc định Re: Giải hệ phương trình : $\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Nguyên văn bởi $LQ\oint_{N}^{T}$ Xem bài viết
Giải hệ phương trình :

$\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Đừng có sử dụng hàm số nha . Không e lại k hiểu dc
Phương trình đầu tương đương với $(x-2-y)(\frac{x-2+y}{\sqrt{(x-2)^{2}+1}+\sqrt{y^{2}+1}}+1)=0$

Cái cụm đằng sau vô nghiệm


Trần Quốc Việt


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 24-01-2015, 23:50
Avatar của $LQ\oint_{N}^{T}$
$LQ\oint_{N}^{T}$ $LQ\oint_{N}^{T}$ đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
Nghề nghiệp: hunter
Sở thích: ngủ
 
Cấp bậc: 20 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 491
Điểm: 166 / 6132
Kinh nghiệm: 66%

Thành viên thứ: 27839
 
Tham gia ngày: Jul 2014
Bài gửi: 500
Đã cảm ơn : 143
Được cảm ơn 377 lần trong 276 bài viết

Mặc định Re: Giải hệ phương trình : $\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Nguyên văn bởi Việt Cồ Xem bài viết
Phương trình đầu tương đương với $(x-2-y)(\frac{x-2+y}{\sqrt{(x-2)^{2}+1}+\sqrt{y^{2}+1}}+1)=0$

Cái cụm đằng sau vô nghiệm
Anh làm chi tiết e xem với




Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 24-01-2015, 23:58
Avatar của Trần Quốc Việt
Trần Quốc Việt Trần Quốc Việt đang ẩn
Điều Hành Diễn Đàn
Đến từ: Nạn Đói 45
 
Cấp bậc: 40 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 195 / 978
Điểm: 827 / 11324
Kinh nghiệm: 13%

Thành viên thứ: 29146
 
Tham gia ngày: Nov 2014
Bài gửi: 2.483
Đã cảm ơn : 489
Được cảm ơn 2.375 lần trong 1.096 bài viết

Mặc định Re: Giải hệ phương trình : $\left\{\begin{matrix} (-2+x+\sqrt{x^2-4x+5})(\sqrt{y^2+1}-y)=1 & \\ \sqrt{3x-2}+x^2y-2x+2=0 & \end{matrix}\right.$

Nguyên văn bởi $LQ\oint_{N}^{T}$ Xem bài viết
Anh làm chi tiết e xem với
Chi tiết đoạn vô nghiệm à


Trần Quốc Việt


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt


Copyright ©2011 - 2018 K2pi.Net.Vn

Liên hệ  ||  K2PI.NET.VN  ||   Lưu Trữ  ||   Lên trên