Đề thi thử HSG - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI HỌC SINH GIỎI MÔN TOÁN giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi HSG Toán 12

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 23-01-2015, 22:24
Avatar của Sakura - My Love
Sakura - My Love Sakura - My Love đang ẩn
$\huge{\mathcal{Sakura}}$
Đến từ: Quảng Trị
Nghề nghiệp: Mou koi nante shinai
Sở thích: Anime, Inequalities.
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 427
Điểm: 125 / 4524
Kinh nghiệm: 10%

Thành viên thứ: 24893
 
Tham gia ngày: Apr 2014
Bài gửi: 377
Đã cảm ơn : 146
Được cảm ơn 197 lần trong 96 bài viết

Lượt xem bài này: 1301
Mặc định Đề thi thử HSG

Bài 1 (2.5 đ)
Cho hàm số
1. Tìm tất cả các giá trị của tham số để đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt và tiếp tuyến của đồ thị tại 2 điểm đó vuông góc với nhau.
2. Xác định để hàm số có cực đại, cực tiểu, đồng thời 2 điểm cực đại, cực tiểu của đồ thị đối xứng với nhau qua
Bài 2 (2.0 đ)
1. Tìm để với mọi số thực ta đều có
2. Giải hệ phương trình

Bài 3 (1.5 đ)
Cho tam giác nội tiếp . là đường cao của . Gọi là hình chiếu vuông góc của lên các cạnh . Chứng minh rằng:
1.
2. thẳng hàng
Bài 4 (2.0 đ)
Cho tứ diện đôi một vuông góc với nhau. Gọi lần lượt là góc tạo bởi các mặt với mặt
1. Chứng minh rằng
2. Giả sử . Chứng minh rằng
Bài 5 (1.0 đ)
Chứng minh rằng là số tự nhiên chia hết cho 13
Bài 6 (1.0 đ)
Cho thỏa mãn . Chứng minh rằng
[CENTER]....................Hết....................


Chủ đề được quan tâm nhiều nhất:



$\mathfrak{Forever}\ \mathfrak{Love}\ \mathfrak{Math}\ \mathfrak{Tan}\ \mathfrak{k2pi}\ \mathfrak{member}$
CỐ GẮNG VÌ MỘT NGƯỜI ... MỘT NGÀY ! YOU ARE MY LOVE

$\fbox{Trần Duy Tân - Đỗ Thùy Anh}$
Tặng ai đó bài hát này !
https://www.youtube.com/watch?v=nL6ZaFe_1Xc

Tìm tất cả các hàm liên tục $f: R \to R$ thỏa mãn đồng thời:

1, $f$ là đơn ánh

2, $f(2x-f(x))=x$

3, Tồn tại $x_0$ sao cho $f(x_0)=x_0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Sakura - My Love 
Trần Quốc Việt (24-01-2015)
  #2  
Cũ 24-01-2015, 00:25
Avatar của caotientrung
caotientrung caotientrung đang ẩn
Cộng Tác Viên
Đến từ: Thpt Đô lương 2
Nghề nghiệp: giáo viên
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 430
Điểm: 127 / 6282
Kinh nghiệm: 23%

Thành viên thứ: 1859
 
Tham gia ngày: Dec 2012
Bài gửi: 383
Đã cảm ơn : 49
Được cảm ơn 319 lần trong 166 bài viết

Mặc định Re: Đề thi thử HSG

Câu 2.2 Hệ đx loại 1
Câu 5. Nhị thức N không khó lắm
Câu 6
Ta có $1=(a^{2}+b^{2}+c^{2})^{2} \leq (a^{3}+2b^{3}+3c^{3})(a+\frac{b}{2}+ \frac{c}{3})\Leftrightarrow
(a^{3}+2b^{3}+3c^{3}) \geq \frac{1}{(a+\frac{b}{2}+ \frac{c}{3})}\geq \frac{1}{\sqrt{(a^{2}+b^{2}+c^{2})(1+\frac{1}{4}+ \frac{1}{9})}}=\frac{6}{7}$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  caotientrung 
Đặng Tuyên (24-01-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014