đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường đặng thúc hứa - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI HỌC SINH GIỎI MÔN TOÁN giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi HSG Toán 11

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 06-01-2015, 20:21
Avatar của Đặng Tuyên
Đặng Tuyên Đặng Tuyên đang ẩn
Thành viên Chính thức
Đến từ: Xuân Tường, Thanh Ch
Nghề nghiệp: Học sinh AK37
Sở thích: Học+gái+bóng
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 193
Điểm: 31 / 1792
Kinh nghiệm: 73%

Thành viên thứ: 28766
 
Tham gia ngày: Oct 2014
Bài gửi: 95
Đã cảm ơn : 68
Được cảm ơn 56 lần trong 34 bài viết

Lượt xem bài này: 5831
Mặc định Đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường Đặng Thúc Hứa

Đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường Đặng Thúc Hứa

Câu I: (4 điểm)
1. Giải phương trình $x^{3} - 5x + 6 = \sqrt[3]{6x - 6}$
2. Giải phương trình $\sqrt{2}.( 2.cos^{2}x - 3.sin2x ) = 4.sin2x.cosx + 2.( sinx - cosx )$
Câu II: ( 4 điểm ) Giải các hệ phương trình sau:
1.$\left\{\begin{matrix}
& 4y^{2}+ 3x + 8 = 5y.( x + 1 ) & \\
& \sqrt{5.( x^{2} + \frac{4}{x + y})} = x + 3 &
\end{matrix}\right.$
2.$\left\{\begin{matrix}
& x.(5x^{2}+ y ) = (x^{2} + y).\sqrt{ x^{2}+ y } & \\
& y^{3} - 9x^{4} - 6x^{2} + 1 = 0 &
\end{matrix}\right.$
Câu III: ( 6 điểm )
1. Cho dãy số ( Un ) có $\left\{\begin{matrix}
& U1 = \frac{1}{2} & \\
& U(n+1) = Un + \frac{n}{2^{n}} &
\end{matrix}\right.$
Với mọi n $\in $ N* . Tìm công thức số hạng tổng quát Un.
2. Cho dãy số (Un) có $\left\{\begin{matrix}
& U1 = \frac{1}{2} & \\
& U(n+1) = \frac{( n + 1). (Un)^{2}}{n.( Un + 1 )} &
\end{matrix}\right.$
Với mọi n $\in $ N* . Chứng minh Un < n, suy ra dãy số giảm, bị chặn dưới và tính Lim Un.
Câu IV: ( 2 điểm )
1. Cho dãy số (Un) có $\left\{\begin{matrix}
& U1 = 5 & \\
& U(n+1) = (Un)^{2} - 2 &
\end{matrix}\right.$
Với mọi n $\in $ N*. Tính $lim\frac{U(n+1)}{U1 . U2 ... Un}$.
2, Cho tam giác ABC có a,b,c lần lượt là độ dài 3 cạnh BC, CA, AB và c = max { a,b,c }, R là bán kính đường tròn ngoại tiếp tam giác. Chứng minh $a^{2} + b^{2} = 2cR$ thì tam giác ABC vuông.
Câu V: ( 2 điểm )
1. Cho tứ diện ABCD có Tam giác ABC vuông tại A, AD vuông góc với mặt phẳng ( ABC) và AB = AC + AD. Tính tổng các góc ABC + CBD + DBA
2. Cho tam giác ABC có AC = 2.AB. Điểm M ( 1;1 ) là trung điểm của cạnh BC, N thuộc cạnh AC sao cho 3.AN= NC, điểm D thuộc cạnh BC sao cho AD đối xứng với AM qua tia phân giác của góc BAC. Phương trình đường thẳng DN: 3x - 2y + 8 = 0, đỉnh C thuộc đường thẳng d: x + y - 7 = 0. Tìm tọa độ các đỉnh của tam giác ABC.
Câu VI ( 2 điểm ) Cho a,b,c > 0 thỏa mãn a + b + abc = 3c. Tìm GTLN của biểu thức:
$P = \frac{a}{a^{2} + 3} + \frac{b}{b^{2} + 3 } + \frac{1}{9c^{2} + 3} $


Chủ đề được quan tâm nhiều nhất:



Lửa thử vàng
Đô-la thử bạn gái


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 06-01-2015, 21:05
Avatar của hungdang
hungdang hungdang đang ẩn
Điều Hành Diễn Đàn
 
Cấp bậc: 34 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 83 / 834
Điểm: 553 / 12006
Kinh nghiệm: 39%

Thành viên thứ: 3145
 
Tham gia ngày: Jan 2013
Bài gửi: 1.661
Đã cảm ơn : 7
Được cảm ơn 1.264 lần trong 734 bài viết

Mặc định Re: đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường đặng thúc hứa

Nguyên văn bởi Đặng Ngọc Tuyên Xem bài viết
Câu I: (4 điểm)
1. Giải phương trình $x^{3} - 5x + 6 = \sqrt[3]{6x - 6}$
2. Giải phương trình $\sqrt{2}.( 2.cos^{2}x - 3.sin2x ) = 4.sin2x.cosx + 2.( sinx - cosx )$
Câu II: ( 4 điểm ) Giải các hệ phương trình sau:
1.$\left\{\begin{matrix}
& 4y^{2}+ 3x + 8 = 5y.( x + 1 ) & \\
& \sqrt{5.( x^{2} + \frac{4}{x + y})} = x + 3 &
\end{matrix}\right.$
2.$\left\{\begin{matrix}
& x.(5x^{2}+ y ) = (x^{2} + y).\sqrt{ x^{2}+ y } & \\
& y^{3} - 9x^{4} - 6x^{2} + 1 = 0 &
\end{matrix}\right.$
Câu III: ( 6 điểm )
1. Cho dãy số ( Un ) có $\left\{\begin{matrix}
& U1 = \frac{1}{2} & \\
& U(n+1) = Un + \frac{n}{2^{n}} &
\end{matrix}\right.$
Với mọi n $\in $ N* . Tìm công thức số hạng tổng quát Un.
2. Cho dãy số (Un) có $\left\{\begin{matrix}
& U1 = \frac{1}{2} & \\
& U(n+1) = \frac{( n + 1). (Un)^{2}}{n.( Un + 1 )} &
\end{matrix}\right.$
Với mọi n $\in $ N* . Chứng minh Un < n, suy ra dãy số giảm, bị chặn dưới và tính Lim Un.
Câu IV: ( 2 điểm )
1. Cho dãy số (Un) có $\left\{\begin{matrix}
& U1 = 5 & \\
& U(n+1) = (Un)^{2} - 2 &
\end{matrix}\right.$
Với mọi n $\in $ N*. Tính $lim\frac{U(n+1)}{U1 . U2 ... Un}$.
2, Cho tam giác ABC có a,b,c lần lượt là độ dài 3 cạnh BC, CA, AB và c = max { a,b,c }, R là bán kính đường tròn ngoại tiếp tam giác. Chứng minh $a^{2} + b^{2} = 2cR$ thì tam giác ABC vuông.
Câu V: ( 2 điểm )
1. Cho tứ diện ABCD có Tam giác ABC vuông tại A, AD vuông góc với mặt phẳng ( ABC) và AB = AC + AD. Tính tổng các góc ABC + CBD + DBA
2. Cho tam giác ABC có AC = 2.AB. Điểm M ( 1;1 ) là trung điểm của cạnh BC, N thuộc cạnh AC sao cho 3.AN= NC, điểm D thuộc cạnh BC sao cho AD đối xứng với AM qua tia phân giác của góc BAC. Phương trình đường thẳng DN: 3x - 2y + 8 = 0, đỉnh C thuộc đường thẳng d: x + y - 7 = 0. Tìm tọa độ các đỉnh của tam giác ABC.
Câu VI ( 2 điểm ) Cho a,b,c > 0 thỏa mãn a + b + abc = 3c. Tìm GTLN của biểu thức:
$P = \frac{a}{a^{2} + 3} + \frac{b}{b^{2} + 3 } + \frac{1}{9c^{2} + 3} $

Bạn cần đọc kỹ nội dung post bài. Cách đặt tiêu đề nhé
Bài này tiêu đề bạn không " Viết Hoa"


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hungdang 
Đặng Tuyên (06-01-2015)
  #3  
Cũ 06-01-2015, 21:09
Avatar của Đặng Tuyên
Đặng Tuyên Đặng Tuyên đang ẩn
Thành viên Chính thức
Đến từ: Xuân Tường, Thanh Ch
Nghề nghiệp: Học sinh AK37
Sở thích: Học+gái+bóng
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 193
Điểm: 31 / 1792
Kinh nghiệm: 73%

Thành viên thứ: 28766
 
Tham gia ngày: Oct 2014
Bài gửi: 95
Đã cảm ơn : 68
Được cảm ơn 56 lần trong 34 bài viết

Mặc định Re: đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường đặng thúc hứa

Nguyên văn bởi Hungdang Xem bài viết
Bạn cần đọc kỹ nội dung post bài. Cách đặt tiêu đề nhé
Bài này tiêu đề bạn không " Viết Hoa"
Dạ... em đã sửa lại và sẽ rút kinh nghiệm ạ.


Lửa thử vàng
Đô-la thử bạn gái


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 06-01-2015, 23:07
Avatar của thái bình
thái bình thái bình đang ẩn
Libach80
Đến từ: THPT Thái Lão
Nghề nghiệp: Đánh trẻ
Sở thích: Làm học sinh
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 471
Điểm: 153 / 7141
Kinh nghiệm: 85%

Thành viên thứ: 838
 
Tham gia ngày: Oct 2012
Bài gửi: 459
Đã cảm ơn : 47
Được cảm ơn 500 lần trong 266 bài viết

Mặc định Re: đề thi chọn đội tuyển hsg lớp 11 - năm 2014 khối 11 trường đặng thúc hứa

Đề bá đạo quá. Sao mà dãy nhiều thế không biết?


TOÁN HỌC LÀ ĐAM MÊ CỦA CUỘC ĐỜI


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Sakura - My Love (07-01-2015), Đặng Tuyên (07-01-2015)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
(Oxy chọn lọc) TUYỂN TẬP 50 BÀI TOÁN OXY HAY VÀ KHÓ Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 1 28-05-2016 18:38
Tuyển chọn các bài toán hình học phẳng Oxy qua đề thi thử THPT Quốc Gia Phạm Kim Chung [Tài liệu] Hình giải tích Oxy 0 25-05-2016 23:46
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
Hóa Học Thi thử THPT Quốc Gia - THPT Đặng Thúc Hứa năm 2016 (lần 2) Phạm Kim Chung Đề luyện thi 1 01-05-2016 18:30
Đề thi thử THPT Quốc Gia - THPT Đặng Thúc Hứa năm 2016 (lần 2) Phạm Kim Chung Đề thi THPT Quốc Gia | trườngTHPT 12 01-05-2016 12:17



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014