PP giải PTVT bằng cách đưa về HPT và Pt thành nhân tử - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 20-12-2014, 21:30
Avatar của ❁◕ ‿ ◕❁
❁◕ ‿ ◕❁ ❁◕ ‿ ◕❁ đang ẩn
Thành viên Chính thức
Đến từ: ✪ .✪
Nghề nghiệp: Học sinh
Sở thích: ◖♪_♪|◗
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 160
Điểm: 24 / 1425
Kinh nghiệm: 40%

Thành viên thứ: 31709
 
Tham gia ngày: Nov 2014
Bài gửi: 72
Đã cảm ơn : 35
Được cảm ơn 2 lần trong 2 bài viết

Lượt xem bài này: 2043
Mặc định PP giải PTVT bằng cách đưa về HPT và Pt thành nhân tử

Giải phương trình: \[2\left( {5x - 3} \right)\sqrt {x + 1} + 5\left( {x + 1} \right)\sqrt {3 - x} = 3\left( {5x + 1} \right)\]
+) Điều kiện: $-1<=x<=3$

+) Đặt $\sqrt{x+1}=a; \sqrt{5x+1}=b (a,b\ge 0)$

Ta có hệ phương trình: $\left\{ \begin{array}{l}

10a^3-5b^3-12a^2+3b^2-16a+20b=0\\
a^2+b^2-4=0
\end{array} \right.$
Vì $a=\dfrac{8}{5}$ không thỏa mãn hệ nên lấy PT$1$ $-$ $( 10a-16)$ PT$2$ ta đc :
$(2a+b-4)(5b^2+b-2a-16)=0$
+) Với $2a+b-4=0$ ta được $x=3$, $x=\dfrac{11}{25}$

+) Với $5b^2+b-2a-16=0$ kết hợp với pt $a^2+b^2-4=0$ ta suy ra pt :

$(5b^2+2b-15)(5b^2-16)=0$
Suy ra : $b= \dfrac{4\sqrt{5}}{5}$ hoặc $b=\dfrac{-1+2\sqrt{19}}{5}$ ( ko thỏa mãn) Suy ra $x=\dfrac{-1}{5}$

Vậy hệ có 3 nghiệm $\big\{-\dfrac{1}{5};\dfrac{11}{25};3\big\}$
Tại sao chỗ màu đỏ lại có thế phân tích đc như vậy nhỉ ??
Khó hiểu quá ? Đó là pp gì ??


Chủ đề được quan tâm nhiều nhất:



(✖╭╮✖) Luck will be come to me if I tried ❁◕ ‿ ◕❁


CỐ╭⌒╮╭⌒ ●TÌM ⌒╮
╭⌒ ⌒╮GẮNG︶⌒~ ⌒TÒI

╱◥█◣ ╱◥█◣
╱◥█◣ 田︱田︱╬╬╬╬╬╬╬╬╬╬╬
♫ ♫ ①⑧⑧⑨⑨♫


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 20-12-2014, 21:49
Avatar của $LQ\oint_{N}^{T}$
$LQ\oint_{N}^{T}$ $LQ\oint_{N}^{T}$ đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
Nghề nghiệp: hunter
Sở thích: ngủ
 
Cấp bậc: 20 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 491
Điểm: 166 / 4914
Kinh nghiệm: 66%

Thành viên thứ: 27839
 
Tham gia ngày: Jul 2014
Bài gửi: 500
Đã cảm ơn : 143
Được cảm ơn 377 lần trong 276 bài viết

Mặc định Re: PP giải PTVT bằng cách đưa về HPT và Pt thành nhân tử

Nguyên văn bởi ontoan Xem bài viết
Tại sao chỗ màu đỏ lại có thế phân tích đc như vậy nhỉ ??
Khó hiểu quá ? Đó là pp gì ??
E nghĩ là dùng hệ số bất định đó anh !!!




Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 21-12-2014, 01:12
Avatar của tutuhtoi
tutuhtoi tutuhtoi đang ẩn
Thành viên Chính thức
 
Cấp bậc: 15 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 362
Điểm: 91 / 5046
Kinh nghiệm: 51%

Thành viên thứ: 6154
 
Tham gia ngày: Mar 2013
Bài gửi: 275
Đã cảm ơn : 132
Được cảm ơn 320 lần trong 138 bài viết

Mặc định Re: PP giải PTVT bằng cách đưa về HPT và Pt thành nhân tử

Trong Casio thần chưởng có 1 phương pháp gọi là UCT để tìm ra các số và biểu thức cần nhân


Phía cuối con đường
What will be will be.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  tutuhtoi 
❁◕ ‿ ◕❁ (21-12-2014)
  #4  
Cũ 21-12-2014, 10:12
Avatar của $LQ\oint_{N}^{T}$
$LQ\oint_{N}^{T}$ $LQ\oint_{N}^{T}$ đang ẩn
Thành viên Chính thức
Đến từ: Hà Tĩnh
Nghề nghiệp: hunter
Sở thích: ngủ
 
Cấp bậc: 20 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 491
Điểm: 166 / 4914
Kinh nghiệm: 66%

Thành viên thứ: 27839
 
Tham gia ngày: Jul 2014
Bài gửi: 500
Đã cảm ơn : 143
Được cảm ơn 377 lần trong 276 bài viết

Mặc định Re: PP giải PTVT bằng cách đưa về HPT và Pt thành nhân tử

Nguyên văn bởi tutuhtoi Xem bài viết
Trong Casio thần chưởng có 1 phương pháp gọi là UCT để tìm ra các số và biểu thức cần nhân
Anh có tài liệu hay link cách đó không cho em xin đi




Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  $LQ\oint_{N}^{T}$ 
❁◕ ‿ ◕❁ (21-12-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
cach gjaj pt vt, cách giải ptvt bằng casio, casio than chưởng, casio thần trưởng, casio thần chưởng, hệ số bất định uct, phương pháp casio thần chưởng, phương pháp casio thần chưởng khi giải hệ, phương pháp uct giải hệ phương trình, phương pháp uct trong hệ pt, pp casio than chuong, uct thần chưởng
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014