Giải bất phương trình:$\sqrt{x^{2}+1}\geq \frac{2x^{2}+2x+1}{4x-1}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 15-11-2014, 19:31
Avatar của Nguyễn Văn Quốc Tuấn
Nguyễn Văn Quốc Tuấn Nguyễn Văn Quốc Tuấn đang ẩn
Nguyễn Văn Quốc Tuấn
Đến từ: Hà Tĩnh
Nghề nghiệp: Sinh Viên
Sở thích: Hacker mũ trắng
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 442
Điểm: 134 / 4976
Kinh nghiệm: 68%

Thành viên thứ: 19484
 
Tham gia ngày: Feb 2014
Bài gửi: 403
Đã cảm ơn : 54
Được cảm ơn 493 lần trong 193 bài viết

Lượt xem bài này: 270
Mặc định Re: Giải bất phương trình:$\sqrt{x^{2}+1}\geq \frac{2x^{2}+2x+1}{4x-1}$

Điều kiện: $x \ne \frac{1}{4}$

Nhận xét: Ta có: $2{x^2} + 2x + 1 = 2\left( {{x^2} + x + \frac{1}{4}} \right) + \frac{1}{2} = 2{\left( {x + \frac{1}{2}} \right)^2} + \frac{1}{2} > 0$

Xét $x < \frac{1}{4} \Rightarrow \frac{{2{x^2} + 2x + 1}}{{4x - 1}} < 0$ Bất phương trình luôn đúng.

Xét $x > \frac{1}{4}$

Ta có: \[\begin{array}{l}
BPT \Leftrightarrow \left( {4x - 1} \right)\sqrt {{x^2} + 1} \ge 2{x^2} + 2x + 1\\
\Leftrightarrow \left( {16{x^2} - 8x + 1} \right)\left( {{x^2} + 1} \right) \ge 4{x^4} + 4{x^2} + 1 + 8{x^3} + 4{x^2} + 4x\\
\Leftrightarrow 16{x^4} - 8{x^3} + 17{x^2} - 8x + 1 \ge 4{x^4} + 8{x^3} + 8{x^2} + 4x + 1\\
\Leftrightarrow 12{x^4} - 16{x^3} + 9{x^2} - 12x \ge 0\\
\Leftrightarrow x\left( {3x - 4} \right)\left( {4{x^2} + 3} \right) \ge 0 \Leftrightarrow x \ge \frac{4}{3}
\end{array}\]

Vậy nghiệm của bất phương trình là: $\left[ \begin{array}{l}
x \ge \frac{4}{3}\\
x < \frac{1}{4}
\end{array} \right.$


Chủ đề được quan tâm nhiều nhất:




Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 15-11-2014, 20:34
Avatar của Đỗ Ngọc Nam
Đỗ Ngọc Nam Đỗ Ngọc Nam đang ẩn
Thành viên Danh dự
Nghề nghiệp: Giáo viên.
 
Cấp bậc: 6 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 135
Điểm: 19 / 1236
Kinh nghiệm: 41%

Thành viên thứ: 29020
 
Tham gia ngày: Nov 2014
Bài gửi: 57
Đã cảm ơn : 28
Được cảm ơn 24 lần trong 16 bài viết

Mặc định Re: Giải bất phương trình:$\sqrt{x^{2}+1}\geq \frac{2x^{2}+2x+1}{4x-1}$

Với phương trình: trong đó bậc của bằng 2, còn của bẳng 1. Ta có thể đặt ẩn phụ để đưa phương trình về 2 ẩn . Coi là ẩn, ta có 1 phương trình bậc 2.
Có nhiều cách đưa về phương trình bậc 2 như vậy, bạn tìm cách chọn 1 cách theo ý đồ của tác giả, mà là một bình phương là xong.
Quay lại phương trình trên, nếu đặt , quy đồng, đưa được về phương trình:
Tất nhiên, với bất phương trình thì bạn phải lập luận 2 trường hợp mới quy đồng được.


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hệ phương trình $\left\{\begin{matrix} x^{2}(1+4x)=\sqrt{y}(\frac{x+y}{2})\\ 3\sqrt{2x-1}+x\sqrt{5-y}-y \end{matrix}\right.$ youngahkim Giải hệ phương trình 0 29-05-2016 23:09
Tài liệu phương pháp hàm số trong giải Hệ phương trình Phạm Kim Chung [Tài liệu] Hệ phương trình 0 25-05-2016 23:39
Giải hệ phương trình $\begin{cases}\sqrt{x+2y}+1=\sqrt{3-2y}+\sqrt{y+2}\\ (x+y)^3+y^2-13y+\sqrt{y^4-1}=11x-15 \end{cases}$ Lê Đình Mẫn Giải hệ phương trình 0 24-04-2016 15:46
Giải phương trình $\begin{array}{l} x\sqrt {\frac{{4{x^2} - 8x}}{{x + 1}}} + 2\left( {{x^2} - 2x - 1} \right)\sqrt {\frac{{x + 1}}{{{x^2} - 2x}}} - \\ \sqrt {2\left( {{x^4} - 4{x^3} + 3{x^2} + 4x + 1} \right)} = {x^2} - x - 1 \end{array}$ Trần Quốc Việt Giải phương trình Vô tỷ 0 05-02-2016 17:53
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014