Chứng minh rằng : phương trình sau có nghiệm thực duy nhất trên [$\frac{1}{2};1$ ] $$\frac{e^x}{(x+1)^2}=x$$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải phương trình Vô tỷ

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 22-10-2014, 18:57
Avatar của Daylight Nguyễn
Daylight Nguyễn Daylight Nguyễn đang ẩn
Thành viên Chính thức
Đến từ: Hải Dương
Nghề nghiệp: Sinh Viên
Sở thích: Toán , Hóa
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 173
Điểm: 27 / 1821
Kinh nghiệm: 95%

Thành viên thứ: 25641
 
Tham gia ngày: May 2014
Bài gửi: 81
Đã cảm ơn : 85
Được cảm ơn 56 lần trong 22 bài viết

Lượt xem bài này: 273
Mặc định Chứng minh rằng : phương trình sau có nghiệm thực duy nhất trên [$\frac{1}{2};1$ ] $$\frac{e^x}{(x+1)^2}=x$$

Chứng minh rằng : phương trình sau có nghiệm thực duy nhất trên [$\frac{1}{2};1$ ]
$$\frac{e^x}{(x+1)^2}=x$$




Chủ đề được quan tâm nhiều nhất:



Đối với kiến thức phải đam mê với cái mình học thì mới thành công được .
Thích thôi chưa đủ . Phải yêu và thấu hiểu :)
untilyoulovevmmu


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 22-10-2014, 21:41
Avatar của Lãng Tử Mưa Bụi
Lãng Tử Mưa Bụi Lãng Tử Mưa Bụi đang ẩn
Thành viên Chính thức
Đến từ: Nơi có gió
Nghề nghiệp: SV Bách Khoa Hà N
Sở thích: Phiêu trong gió
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 187
Điểm: 30 / 1813
Kinh nghiệm: 51%

Thành viên thứ: 28531
 
Tham gia ngày: Aug 2014
Bài gửi: 91
Đã cảm ơn : 8
Được cảm ơn 62 lần trong 35 bài viết

Mặc định Re: Chứng minh rằng : phương trình sau có nghiệm thực duy nhất trên [$\frac{1}{2};1$ ] $$\frac{e^x}{(x+1)^2}=x$$

Nguyên văn bởi Daylight Nguyễn Xem bài viết
Chứng minh rằng : phương trình sau có nghiệm thực duy nhất trên [$\frac{1}{2};1$ ]
$$\frac{e^x}{(x+1)^2}=x$$


Lấy ln2 vế
$x=lnx+2ln(x+1)$
Khảo sát hàm số $f(x)=lnx+2ln(x+1)-x $
$f(\frac{1}{2}).f(1)<0 $
Vì hàm số liên tục nên có 1 nghiệm duy nhất trong đoạn $[\frac{1}{2};1]$


Mình sinh ra k phải là để chờ đợi cái chết .
Sẽ không có gắng trở thành người giỏi nhất hay vĩ đại nhất
Nhưng mình sẽ cố gắng trở thành người giỏi nhất vĩ đại nhất hết khả năng mình có thể đạt được.
Người vĩ đại nhất chắc chắn là 1 người vĩ đại và không quan tâm đến việc mọi người biết đến sự vĩ đại của họ.
Sống đơn giản là xây dượng tương lai sau cái chết của mình.
L-T-M-B \Leftrightarrow 1>\infty


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Lãng Tử Mưa Bụi 
Nguyễn Duy Hồng (23-10-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh phương trình mũ có nghiệm thực dương duy nhất Trangsf Hỏi và Giải đáp nhanh các bài Toán 1 26-05-2016 22:34
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47
Chứng minh Các BĐT đa thức bậc 4 ba biến thực trên máy tính Inspectorgadget [Tài liệu] Bất đẳng thức 0 27-04-2016 12:45
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014