Cho $ab+bc+ca =3 $ Chứng minh rằng : $\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 10-08-2014, 23:42
Avatar của Sakura - My Love
Sakura - My Love Sakura - My Love đang ẩn
$\huge{\mathcal{Sakura}}$
Đến từ: Quảng Trị
Nghề nghiệp: Mou koi nante shinai
Sở thích: Anime, Inequalities.
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 427
Điểm: 125 / 4550
Kinh nghiệm: 10%

Thành viên thứ: 24893
 
Tham gia ngày: Apr 2014
Bài gửi: 377
Đã cảm ơn : 146
Được cảm ơn 197 lần trong 96 bài viết

Lượt xem bài này: 304
Mặc định Cho $ab+bc+ca =3 $ Chứng minh rằng : $\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}}$

Cho $ab+bc+ca =3 $ Chứng minh rằng :
$$\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}} \le \frac{1}{{abc}}$$

PS: Tiêu đề rõ ràng nha em.


Chủ đề được quan tâm nhiều nhất:



$\mathfrak{Forever}\ \mathfrak{Love}\ \mathfrak{Math}\ \mathfrak{Tan}\ \mathfrak{k2pi}\ \mathfrak{member}$
CỐ GẮNG VÌ MỘT NGƯỜI ... MỘT NGÀY ! YOU ARE MY LOVE

$\fbox{Trần Duy Tân - Đỗ Thùy Anh}$
Tặng ai đó bài hát này !
https://www.youtube.com/watch?v=nL6ZaFe_1Xc

Tìm tất cả các hàm liên tục $f: R \to R$ thỏa mãn đồng thời:

1, $f$ là đơn ánh

2, $f(2x-f(x))=x$

3, Tồn tại $x_0$ sao cho $f(x_0)=x_0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Sakura - My Love 
Math (22-08-2014)
  #2  
Cũ 11-08-2014, 06:05
Avatar của HongAn39
HongAn39 HongAn39 đang ẩn
$\Huge{\mathcal{HongAn}}$
Đến từ: TP HCM
Nghề nghiệp: Sinh Viên
 
Cấp bậc: 11 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 259
Điểm: 50 / 2898
Kinh nghiệm: 38%

Thành viên thứ: 20204
 
Tham gia ngày: Feb 2014
Bài gửi: 152
Đã cảm ơn : 68
Được cảm ơn 301 lần trong 117 bài viết

Mặc định Re: Cho $ab+bc+ca =3 $ Chứng minh rằng : $\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}}$

Nguyên văn bởi Trần Duy Tan Xem bài viết
Cho $ab+bc+ca =3 $ Chứng minh rằng :
$$\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}} \le \frac{1}{{abc}}$$

PS: Tiêu đề rõ ràng nha em.
Do: $ab+bc+ca =3 $ Suy ra $abc \le 1$
Ta có: \[\frac{1}{{1 + {a^2}(b + c)}} \leq \frac{1}{abc+{a^2}(b + c)}=\frac{1}{a(ab+bc+ca)}=\frac{1}{3a}\]
Tương tự: \[\left\{ \begin{matrix}\frac{1}{{1 + {b^2}(a + c)}} \le \frac{1}{3b} \\ \frac{1}{{1 + {c^2}(a + b)}} \le\frac{1}{3c} \end{matrix}\right.\]
Suy ra: \[\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}} \le \frac{1}{3}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) = \frac{ab+bc+ca}{3abc} = \frac{1}{abc}\]


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Math (22-08-2014), Sakura - My Love (11-08-2014)
  #3  
Cũ 11-08-2014, 08:46
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: THPTL.Q.Chí (HT)
Sở thích: Lặng Lẽ
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 810
Điểm: 515 / 9032
Kinh nghiệm: 43%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.546
Đã cảm ơn : 503
Được cảm ơn 1.241 lần trong 754 bài viết

Mặc định Re: Cho $ab+bc+ca =3 $ Chứng minh rằng : $\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}}$

Nguyên văn bởi Trần Duy Tan Xem bài viết
Hình như anh bị ngược dấu rồi ạ ! $abc \le 1$ thì $$\frac{1}{{1 + {a^2}(b + c)}} \ge \frac{1}{abc+{a^2}(b + c)}$$ rồi ạ !
Sao vậy @Tân! Nếu $ 1 \ge abc$ thì:
$$1+a^2(b+c) \ge abc+a^2(b+c) \Rightarrow \frac{1}{1+a^2(b+c)} \le \frac{1}{abc+a^2(b+c)}$$


Nguyễn Minh Đức-THPT Lê Quảng Chí (Hà Tĩnh)


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 11-08-2014, 09:04
Avatar của Sakura - My Love
Sakura - My Love Sakura - My Love đang ẩn
$\huge{\mathcal{Sakura}}$
Đến từ: Quảng Trị
Nghề nghiệp: Mou koi nante shinai
Sở thích: Anime, Inequalities.
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 427
Điểm: 125 / 4550
Kinh nghiệm: 10%

Thành viên thứ: 24893
 
Tham gia ngày: Apr 2014
Bài gửi: 377
Đã cảm ơn : 146
Được cảm ơn 197 lần trong 96 bài viết

Mặc định Re: Cho $ab+bc+ca =3 $ Chứng minh rằng : $\frac{1}{{1 + {a^2}(b + c)}} + \frac{1}{{1 + {b^2}(a + c)}} + \frac{1}{{1 + {c^2}(a + b)}}$

Nguyên văn bởi Duc_Huyen1604 Xem bài viết
Sao vậy @Tân! Nếu $ 1 \ge abc$ thì:
$$1+a^2(b+c) \ge abc+a^2(b+c) \Rightarrow \frac{1}{1+a^2(b+c)} \le \frac{1}{abc+a^2(b+c)}$$
Đúng rồi đức .tơ nhầm $abc \ge 1 $ cái này khi tối tớ đã để ý nhưng lại nhầm mất hĩ cảm ơn cậu


$\mathfrak{Forever}\ \mathfrak{Love}\ \mathfrak{Math}\ \mathfrak{Tan}\ \mathfrak{k2pi}\ \mathfrak{member}$
CỐ GẮNG VÌ MỘT NGƯỜI ... MỘT NGÀY ! YOU ARE MY LOVE

$\fbox{Trần Duy Tân - Đỗ Thùy Anh}$
Tặng ai đó bài hát này !
https://www.youtube.com/watch?v=nL6ZaFe_1Xc

Tìm tất cả các hàm liên tục $f: R \to R$ thỏa mãn đồng thời:

1, $f$ là đơn ánh

2, $f(2x-f(x))=x$

3, Tồn tại $x_0$ sao cho $f(x_0)=x_0$


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh rằng $x^2+y^2+\frac{3}{5}xy>1$ jupiterhn9x Bất đẳng thức - Cực trị 1 22-05-2016 13:41
Chứng minh rằng $\forall a\geq 1$ ta luôn có $\frac{1}{a^{x}}+\frac{1}{a^{y}}+\frac{1}{a^{z}}\g eq \frac{x}{a^{x}}+\frac{y}{a^{y}}+\frac{z}{a^{z}}$ youngahkim Bất đẳng thức - Cực trị 1 20-05-2016 13:44
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014