Tìm giá trị nhỏ nhất của biểu thức $P=3(a+b+c)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1 }{c}\right)$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 07-07-2014, 12:20
Avatar của maxmin
maxmin maxmin đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 153
Điểm: 22 / 2120
Kinh nghiệm: 15%

Thành viên thứ: 7549
 
Tham gia ngày: Mar 2013
Bài gửi: 68
Đã cảm ơn : 31
Được cảm ơn 35 lần trong 23 bài viết

Lượt xem bài này: 1006
Mặc định Tìm giá trị nhỏ nhất của biểu thức $P=3(a+b+c)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1 }{c}\right)$

Cho $a,b,c$ là ba số thực dương thỏa mãn: $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức $\displaystyle P=3(a+b+c)+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac {1}{c}\right)$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 07-07-2014, 14:01
Avatar của Quân Sư
Quân Sư Quân Sư đang ẩn
Quản Lý Diễn Đàn
Đến từ: Hà Tĩnh
Nghề nghiệp: THPTL.Q.Chí (HT)
Sở thích: Lặng Lẽ
 
Cấp bậc: 33 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 81 / 810
Điểm: 515 / 9022
Kinh nghiệm: 43%

Thành viên thứ: 20436
 
Tham gia ngày: Feb 2014
Bài gửi: 1.546
Đã cảm ơn : 503
Được cảm ơn 1.241 lần trong 754 bài viết

Mặc định Re: Cho $a,b,c$ là ba số thực dương thỏa mãn: $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức $P=3(a+b+c)+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfra c{1}{c}\right)$

Do $a^2+b^2+c^2=3$ nên $0<a,b,c< \sqrt{3}$.
Ta đi chứng minh:
$$3a+\frac{2}{a} \ge \frac{a^2}{2}+\frac{9}{2}~~~(*)$$.
Thật vậy:
$(*) \Leftrightarrow a^3-6a^2+9a-4 \le 0 \Leftrightarrow (a-1)^2(a-4) \le 0$ ( luôn đúng).
Tương tự rồi cộng lại ta suy ra:
$$P \ge \frac{a^2+b^2+c^2}{2}+\frac{27}{2}=15$$.
Dấu $=$ xảy ra khi $a=b=c=1$.
Vậy $Min_P=15$.


Nguyễn Minh Đức-THPT Lê Quảng Chí (Hà Tĩnh)


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Quân Sư 
Dam Uoc Mo (26-07-2014)
  #3  
Cũ 07-07-2014, 14:54
Avatar của Trọng Nhạc
Trọng Nhạc Trọng Nhạc đang ẩn
Quản Lý Diễn Đàn
Đến từ: Cà Mau
Nghề nghiệp: thợ toán
Sở thích: yên lặng
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 64 / 642
Điểm: 297 / 8714
Kinh nghiệm: 69%

Thành viên thứ: 9728
 
Tham gia ngày: Apr 2013
Bài gửi: 893
Đã cảm ơn : 971
Được cảm ơn 896 lần trong 483 bài viết

Mặc định Re: Cho $a,b,c$ là ba số thực dương thỏa mãn: $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức $P=3(a+b+c)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1 }{c}\right)$

Nguyên văn bởi maxmin Xem bài viết
Cho $a,b,c$ là ba số thực dương thỏa mãn: $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức $\displaystyle P=3(a+b+c)+2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac {1}{c}\right)$
GIẢI
Dùng phương pháp U.C.T
$3a+\frac{2}{a}\geq 5+\frac{1}{2}\left(a^{2}-1\right)\iff\frac{\left(a-1 \right)^{2}\left(4-a \right)}{2a}\geq 0$ do $0<a<\sqrt{3}$
$P\geq 15 $ dấu bằng xảy ra khi a=b=c=1




Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Trọng Nhạc 
Dam Uoc Mo (26-07-2014)
  #4  
Cũ 07-07-2014, 15:10
Avatar của maxmin
maxmin maxmin đang ẩn
Thành viên Chính thức
 
Cấp bậc: 7 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 153
Điểm: 22 / 2120
Kinh nghiệm: 15%

Thành viên thứ: 7549
 
Tham gia ngày: Mar 2013
Bài gửi: 68
Đã cảm ơn : 31
Được cảm ơn 35 lần trong 23 bài viết

Mặc định Re: Cho $a,b,c$ là ba số thực dương thỏa mãn: $a^2+b^2+c^2=3$. Tìm giá trị nhỏ nhất của biểu thức $P=3(a+b+c)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1 }{c}\right)$

Nguyên văn bởi Trọng Nhạc Xem bài viết
GIẢI
Dùng phương pháp U.C.T
$3a+\frac{2}{a}\geq 5+\frac{1}{2}\left(a^{2}-1\right)\iff\frac{\left(a-1 \right)^{2}\left(4-a \right)}{2a}\geq 0$ do $0<a<\sqrt{3}$
$P\geq 15 $ dấu bằng xảy ra khi a=b=c=1
Khẳng định hoặc phủ định mệnh đề sau: Cho $a,b,c$ là các số thực dương thỏa mãn $a^2+b^2+c^2=3$ và $0<\sqrt 3.x\le(2+\sqrt 3)y$. Khi đó:

\[x{\rm{(}}a + b + c) + y\left( {\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \right) \ge 3(x + y)\]


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Tìm giá trị nhỏ nhất của biểu thức mu8991 Bất đẳng thức - Cực trị 3 29-05-2016 01:03
Tìm giá trị lớn nhất của biểu thức $P={{a}^{4}}+{{b}^{4}}+{{c}^{4}}+3(ab+bc+ca)$. $N_B^N$ Bất đẳng thức - Cực trị 1 23-05-2016 08:48
Tìm giá trị nhỏ nhất của biểu thức $$P=a\left[\left(a^2+3\right)\dfrac{a+b}{c}+24\right]+b\left[\left(b^2+3\right)\dfrac{b+c}{a}+24\right]+c\left[\left(c^2+3\right)\dfrac{c+a}{b}+24\right]$$ Trần Quốc Việt Bất đẳng thức - Cực trị 1 04-05-2016 23:05
Tìm giá trị lớn nhất của biểu thức $P=\dfrac{\left(a-b \right)\left(b-c \right)\left(c-a \right)}{a^2+b^2+c^2}$ Trần Quốc Việt Bất đẳng thức - Cực trị 6 28-04-2016 14:41
Cho x, y, z $\in \left[0;2 \right]$ thoả mãn x +y +z =3. Tìm giá trị lớn nhất của biểu thức : P=$\frac{1}{x^{2}+y^{2}+2}+\frac{1}{y^{2}+z^{2}+2} +\frac{1}{z^{2}+x^{2}+2}+\sqrt{xy}+\sqrt{yz}+\sqrt {zx}$ kdn1999 Bất đẳng thức - Cực trị 0 27-04-2016 20:02



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014