Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 30-06-2014, 18:49
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Quản Lý Chuyên Mục
Đến từ: TK12NBK
Nghề nghiệp: Học sinh
Sở thích: TPT
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 577
Điểm: 235 / 6224
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Lượt xem bài này: 744
Mặc định Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Cho $a, b, c$ không âm. Chứng minh rằng:
$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$


Chủ đề được quan tâm nhiều nhất:




Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 30-06-2014, 19:37
Avatar của Ngọc Anh
Ngọc Anh Ngọc Anh đang ẩn
๖ۣۜGió
Đến từ: Thanh Hoá
Nghề nghiệp: Học sinh
Sở thích: Toán, Lý
 
Cấp bậc: 17 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 403
Điểm: 112 / 4726
Kinh nghiệm: 14%

Thành viên thứ: 17755
 
Tham gia ngày: Dec 2013
Bài gửi: 337
Đã cảm ơn : 176
Được cảm ơn 631 lần trong 227 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Nguyên văn bởi HSƠN1998 Xem bài viết
Cho $a, b, c$ không âm. Chứng minh rằng:
$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$
Áp dụng AM-GM ta có: $$\sum \sqrt{\dfrac{a}{(a+1)(c+1)}} \le \dfrac{1}{2} \left(\sum \dfrac{a}{a+1} +\sum \dfrac{1}{c+1}\right)=\dfrac{3}{2}$$.
Từ đây ta suy ra dpcm.


Thời gian của bạn là hữu hạn, vì thế đừng lãng phí nó để sống cuộc đời người khác


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Ngọc Anh 
Neverland (30-06-2014)
  #3  
Cũ 30-06-2014, 19:39
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 5018
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Đề sai rồi em
Phản ví dụ:
a=1000,b=0,01;c=0,01
Anh nghĩ chắc cần ĐK abc=1 thì nó mới đúng

Nguyên văn bởi Ngọc Anh Xem bài viết
Áp dụng AM-GM ta có: $$\sum \sqrt{\dfrac{a}{(a+1)(c+1)}} \le \dfrac{1}{2} \left(\sum \dfrac{a}{a+1} +\sum \dfrac{1}{c}\right)=\dfrac{3}{2}$$.
Từ đây ta suy ra dpcm.
Cái đoạn đó chưa ổn lắm anh ạ


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 30-06-2014, 19:43
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Quản Lý Chuyên Mục
Đến từ: TK12NBK
Nghề nghiệp: Học sinh
Sở thích: TPT
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 577
Điểm: 235 / 6224
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Nguyên văn bởi Runaway Xem bài viết
Đề sai rồi em
Phản ví dụ:
a=1000,b=0,01;c=0,01
Anh nghĩ chắc cần ĐK abc=1 thì nó mới đúng


Cái đoạn đó chưa ổn lắm anh ạ
Đúng mà anh



Báo cáo bài viết xấu Trả lời với trích dẫn
  #5  
Cũ 30-06-2014, 19:44
Avatar của Ngọc Anh
Ngọc Anh Ngọc Anh đang ẩn
๖ۣۜGió
Đến từ: Thanh Hoá
Nghề nghiệp: Học sinh
Sở thích: Toán, Lý
 
Cấp bậc: 17 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 403
Điểm: 112 / 4726
Kinh nghiệm: 14%

Thành viên thứ: 17755
 
Tham gia ngày: Dec 2013
Bài gửi: 337
Đã cảm ơn : 176
Được cảm ơn 631 lần trong 227 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Nguyên văn bởi Runaway Xem bài viết
Đề sai rồi em
Phản ví dụ:
a=1000,b=0,01;c=0,01
Anh nghĩ chắc cần ĐK abc=1 thì nó mới đúng


Cái đoạn đó chưa ổn lắm anh ạ
Nãy anh gõ nhầm. Đã sửa nhé


Thời gian của bạn là hữu hạn, vì thế đừng lãng phí nó để sống cuộc đời người khác


Báo cáo bài viết xấu Trả lời với trích dẫn
  #6  
Cũ 30-06-2014, 19:44
Avatar của ma29
ma29 ma29 đang ẩn
songoku
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 458
Điểm: 144 / 6053
Kinh nghiệm: 34%

Thành viên thứ: 13065
 
Tham gia ngày: Jun 2013
Bài gửi: 434
Đã cảm ơn : 202
Được cảm ơn 279 lần trong 119 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Nguyên văn bởi HSƠN1998 Xem bài viết
Cho $a, b, c$ không âm. Chứng minh rằng:
$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$
Đúng ra dạng toán này hoặc dạng những bài giống câu cực trị đề thi QG năm 2013 rất khó làm, khó những câu ra những năm gần đây


Báo cáo bài viết xấu Trả lời với trích dẫn
  #7  
Cũ 30-06-2014, 19:46
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 5018
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Chứng minh rằng: $\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$

Nguyên văn bởi HSƠN1998 Xem bài viết
Cho $a, b, c$ không âm. Chứng minh rằng:
$\sqrt{a(b+1)}+\sqrt{b(c+1)}+\sqrt{c(a+1)} \leq \frac{3}{2}\sqrt{(a+1)(b+1)(c+1)}$
,ừ đúng rùi,anh coi lộn đề


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực $a,b,c$. Chứng minh rằng: $\sum \frac{a^{2}+b^{2}}{(a-b)^{2}}\geq \frac{5}{2}$ pcfamily Đại số lớp 8 4 20-06-2016 22:22
Chứng minh rằng $x^2+y^2+\frac{3}{5}xy>1$ jupiterhn9x Bất đẳng thức - Cực trị 1 22-05-2016 13:41
Chứng minh rằng $\forall a\geq 1$ ta luôn có $\frac{1}{a^{x}}+\frac{1}{a^{y}}+\frac{1}{a^{z}}\g eq \frac{x}{a^{x}}+\frac{y}{a^{y}}+\frac{z}{a^{z}}$ youngahkim Bất đẳng thức - Cực trị 1 20-05-2016 13:44
Chứng minh rằng với mọi giá trị của m khác không thì phương trình sau luôn có nghiệm $$\frac{m}{{{x^2} - x}} + \frac{{{m^3} + m}}{{{x^2} - 4}} = \sqrt {{m^2} - m + 1} $$ hoangphilongpro Giới hạn hàm số - Giới hạn dãy số 0 28-04-2016 12:47
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014