Giải hệ phương trình: $\left\{ \begin{array}{l} {x^4} - {y^4} = \frac{3}{{4y}} - \frac{1}{{2x}}\\ {\left( {{x^2} - {y^2}} \right)^5} + 5 = 0 \end{array} \right.$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giải hệ phương trình

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 04-11-2012, 22:48
Avatar của hero_math96
hero_math96 hero_math96 đang ẩn
Thành viên Danh dự
Đến từ: Nghệ An quê choa
 
Cấp bậc: 4 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 78
Điểm: 9 / 1184
Kinh nghiệm: 12%

Thành viên thứ: 826
 
Tham gia ngày: Oct 2012
Bài gửi: 29
Đã cảm ơn : 143
Được cảm ơn 39 lần trong 18 bài viết

Lượt xem bài này: 1489
Mặc định Giải hệ phương trình: $\left\{ \begin{array}{l} {x^4} - {y^4} = \frac{3}{{4y}} - \frac{1}{{2x}}\\ {\left( {{x^2} - {y^2}} \right)^5} + 5 = 0 \end{array} \right.$

Giải hệ phương trình sau:
\[\left\{ \begin{array}{l}
{x^4} - {y^4} = \dfrac{3}{{4y}} - \dfrac{1}{{2x}}\\
{\left( {{x^2} - {y^2}} \right)^5} + 5 = 0
\end{array} \right.\]


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  hero_math96 
Miền cát trắng (04-11-2012)
  #2  
Cũ 04-11-2012, 23:23
Avatar của Con phố quen
Con phố quen Con phố quen đang ẩn
Quản trị www.k2pi.net
 
Cấp bậc: 22 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 529
Điểm: 195 / 7987
Kinh nghiệm: 18%

Thành viên thứ: 897
 
Tham gia ngày: Oct 2012
Bài gửi: 585
Đã cảm ơn : 379
Được cảm ơn 1.758 lần trong 473 bài viết

Mặc định

Nguyên văn bởi hero_math96 Xem bài viết
Giải hệ phương trình sau:
\[\left\{ \begin{array}{l}
{x^4} - {y^4} = \dfrac{3}{{4y}} - \dfrac{1}{{2x}}\\
{\left( {{x^2} - {y^2}} \right)^5} + 5 = 0
\end{array} \right.\]
Theo con phố quen đây là một bài hệ rất hay và độ khó cũng khá cao ở mức kỉ thuật. Đặc biệt là con số $5$ huyền bí trong bài hệ.
Ta thử phân tích các điều liên quan sau : $$x^2-y^2 =(x-y)(x+y) \ ; \ x^4 -y^4 =(x^2-y^2)(x^2+y^2) = (x-y)(x+y)\left[ (x+y)^2-2xy \right]$$$$xy = (x+y)^2 - (x-y)^2 \ ; \ 3x-2y = x +2(x-y) =(x+y)-2(x-y)-y$$ Với các phân tích như đã thấy, ta quan sát biểu thức $x+y$ và $x-y$ có liên quan chặt chẽ tới các biểu thức trong bài toán. Do đó ta đi đến việc chọn ẩn phụ để làm tinh giản bớt tính phức tạp trong bài toán như sau : $$\begin{cases} a=x+y \\ b =x-y \end{cases} \quad (ab \ne 0; \ a \ne \pm b)$$ Từ đây ta hoàn toàn có thể biễu diễn các phân tích đã chỉ ra theo $a$ và $b$ như sau : $$\begin{aligned} & x^2-y^2=ab \ ; \ 4xy=a^2-b^2 \\ & 3x-2y=(x+y)+2(x-y) -y=\dfrac{a+5b}{2} \\ & x^4-y^4=(x^2-y^2)(x^2+y^2)=\dfrac{ab(a^2+b^2)}{2} \end{aligned}$$ Từ đó ta có hệ phương trình đã cho tương đương với hệ phương trình : $$\begin{cases}\dfrac{ab(a^2+b^2)}{2}=\dfrac{a+5b} {2(a^2-b^2)} \\\ a^5b^5=-5 \end{cases} \Leftrightarrow \begin{cases} b(a^4-b^4)=1-a^4b^6 \\\ a^5b^5=-5 \end{cases}$$$$\begin{cases} (b^5+1)(a^4b-1)=0 \\ a^5b^5=-5 \end{cases} \Leftrightarrow \left[\begin{matrix} \begin{cases}b=-1 \\ a^5=5 \end{cases} \\ \begin{cases} a^4b=1 \\ a^5b^5=-5 \end{cases} \end{matrix} \right.$$ Tới đây việc trả về các biến $x,y$ các bạn tiếp sức tiếp cho con phố quen dùm.


TRIỆU TẤM LÒNG NGƯỜI CON VIỆT HƯỚNG VỀ BIỂN ĐÔNG


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 13 người đã cảm ơn cho bài viết này
${\pi}^2$ (05-11-2012), catbuilata (21-09-2013), Cô Bé Gió Sương (04-11-2012), FOR U (04-11-2012), Hà Nguyễn (04-11-2012), hero_math96 (09-11-2012), Huy Vinh (23-09-2013), huyenthuc (15-05-2013), Lê Đình Mẫn (17-11-2012), Miền cát trắng (04-11-2012), miền cát trắng hải lăng (14-12-2014), Nắng vàng (04-11-2012), nerver (23-09-2013)
  #3  
Cũ 17-11-2012, 04:13
Avatar của Đặng Thành Nam
Đặng Thành Nam Đặng Thành Nam đang ẩn
Quản Lý Diễn Đàn
Đến từ: Phú Thọ
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 627
Điểm: 282 / 9342
Kinh nghiệm: 11%

Thành viên thứ: 1209
 
Tham gia ngày: Nov 2012
Bài gửi: 848
Đã cảm ơn : 515
Được cảm ơn 1.462 lần trong 525 bài viết

Mặc định

Nguyên văn bởi Con phố quen Xem bài viết
Theo con phố quen đây là một bài hệ rất hay và độ khó cũng khá cao ở mức kỉ thuật. Đặc biệt là con số $5$ huyền bí trong bài hệ.
Ta thử phân tích các điều liên quan sau : $$x^2-y^2 =(x-y)(x+y) \ ; \ x^4 -y^4 =(x^2-y^2)(x^2+y^2) = (x-y)(x+y)\left[ (x+y)^2-2xy \right]$$$$xy = (x+y)^2 - (x-y)^2 \ ; \ 3x-2y = x +2(x-y) =(x+y)-2(x-y)-y$$ Với các phân tích như đã thấy, ta quan sát biểu thức $x+y$ và $x-y$ có liên quan chặt chẽ tới các biểu thức trong bài toán. Do đó ta đi đến việc chọn ẩn phụ để làm tinh giản bớt tính phức tạp trong bài toán như sau : $$\begin{cases} a=x+y \\ b =x-y \end{cases} \quad (ab \ne 0; \ a \ne \pm b)$$ Từ đây ta hoàn toàn có thể biễu diễn các phân tích đã chỉ ra theo $a$ và $b$ như sau : $$\begin{aligned} & x^2-y^2=ab \ ; \ 4xy=a^2-b^2 \\ & 3x-2y=(x+y)+2(x-y) -y=\dfrac{a+5b}{2} \\ & x^4-y^4=(x^2-y^2)(x^2+y^2)=\dfrac{ab(a^2+b^2)}{2} \end{aligned}$$ Từ đó ta có hệ phương trình đã cho tương đương với hệ phương trình : $$\begin{cases}\dfrac{ab(a^2+b^2)}{2}=\dfrac{a+5b} {2(a^2-b^2)} \\\ a^5b^5=-5 \end{cases} \Leftrightarrow \begin{cases} b(a^4-b^4)=1-a^4b^6 \\\ a^5b^5=-5 \end{cases}$$$$\begin{cases} (b^5+1)(a^4b-1)=0 \\ a^5b^5=-5 \end{cases} \Leftrightarrow \left[\begin{matrix} \begin{cases}b=-1 \\ a^5=5 \end{cases} \\ \begin{cases} a^4b=1 \\ a^5b^5=-5 \end{cases} \end{matrix} \right.$$ Tới đây việc trả về các biến $x,y$ các bạn tiếp sức tiếp cho con phố quen dùm.
Bài này có thể giải bằng cách đưa về dạng đồng bậc


Giáo viên Toán tại website vted.vn - Học toán online chất lượng cao!
Chi tiết các khoá học các bạn xem tại link: http://vted.vn/khoa-hoc.html


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Đặng Thành Nam 
Hiếu Titus (25-08-2015)
  #4  
Cũ 20-09-2013, 22:54
Avatar của Cổ Lực Na Trát
Cổ Lực Na Trát Cổ Lực Na Trát đang ẩn
Thành viên Chính thức
 
Cấp bậc: 11 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 251
Điểm: 48 / 3669
Kinh nghiệm: 5%

Thành viên thứ: 1994
 
Tham gia ngày: Dec 2012
Bài gửi: 144
Đã cảm ơn : 179
Được cảm ơn 50 lần trong 39 bài viết

Mặc định Re: Giải hệ phương trình: $\left\{ \begin{array}{l} {x^4} - {y^4} = \frac{3}{{4y}} - \frac{1}{{2x}}\\ {\left( {{x^2} - {y^2}} \right)^5} + 5 = 0 \end{array} \right.$

Nguyên văn bởi dangnamneu Xem bài viết
Bài này có thể giải bằng cách đưa về dạng đồng bậc
Đưa về dạng đồng bậc làm sao thế, chi tiết giúp mình với


Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải hệ phương trình chứa $\sqrt {2{x^2} - x + y + 4} - \sqrt {21x + y - 16} + {x^2} - x + y + 1 = 0$ phuongthaosp1 Giải hệ phương trình 0 02-06-2016 15:53
Giải phương trình: \[2{x^2}\left( {3{x^2} + 1} \right) = \left( {{x^2} + 1} \right)\left( {1 - 3x\sqrt {4{x^2} - 3} } \right)\] dobinh1111 Giải phương trình Vô tỷ 0 18-05-2016 11:37
Giải hệ phương trình chứa ${\sqrt {{x^2} + 4x + 3} + y\left( {1 - \sqrt {x + 3} } \right) = {y^3} + \left( {1 - {y^2}} \right)\sqrt {x + 1} }$ dobinh1111 Giải hệ phương trình 0 18-05-2016 11:35
Giải hệ phương trình (trích SPHN lần 3) $\left\{ \begin{align} & {{x}^{4}}-13{{x}^{2}}-2{{y}^{3}}+10x+4y+24=0 \\ & \ln \frac{{{x}^{2}}+1}{{{y}^{2}}+1}+x-y=0 \\ \end{align} \right.$ catbuilata Giải hệ phương trình 0 21-04-2016 13:10
Tuyển tập Hệ phương trình giải được bằng phương pháp đánh giá Phạm Kim Chung [Tài liệu] Hệ phương trình 92 05-01-2016 11:15



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 


Từ khóa
$left, bat phuong trinh, bất phương trình, beginarrayl, endarray, frac12x or, frac34y, giải, hệ phương, hệ phương trình, he phuong trinh, left\{\begin{matrix} x^{4}-2x=y^{4}-y, phuong trinh, phương, phương trình, right$, right5, trình
Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014