Cho x, y, z dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{c+b}{c+b}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 28-05-2014, 03:09
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Quản Lý Chuyên Mục
Đến từ: TK12NBK
Nghề nghiệp: Học sinh
Sở thích: TPT
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 577
Điểm: 235 / 6216
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Lượt xem bài này: 417
Mặc định Cho a, b, c dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{b+c}{b+a}$

Cho a, b, c dương. Chứng minh:
$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{b+c}{b+a}$


Chủ đề được quan tâm nhiều nhất:




Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 28-05-2014, 11:57
Avatar của Nhữ Phong
Nhữ Phong Nhữ Phong đang ẩn
Thành viên Chính thức
Đến từ: ninh binh
Nghề nghiệp: hoc sinh
Sở thích: toan
 
Cấp bậc: 17 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 419
Điểm: 121 / 5080
Kinh nghiệm: 77%

Thành viên thứ: 16741
 
Tham gia ngày: Oct 2013
Bài gửi: 363
Đã cảm ơn : 157
Được cảm ơn 346 lần trong 199 bài viết

Mặc định Re: Cho x, y, z dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{c+b}{c+b}$

Lời giải
Ta có $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-3=\frac{(a-b)^{2}}{ab}+\frac{(a-c)(b-c)}{ac}$
Do đó bất đẳng thức có thể viết lại thành
$[\frac{1}{ab}-\frac{1}{(a+c)(b+c)}](a-b)^{2}+[\frac{1}{ac}-\frac{1}{(a+c)(a+b)}](a-c)(b-c)\geq 0$
Chỉ cần giả sử c=min(a,b,c) ta có ngay đpcm



Learn from yesterday, live for today, hope for tomorrow and the important thing is not to stop questioning


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 28-05-2014, 12:02
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 5012
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Cho x, y, z dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{c+b}{c+b}$

Sai đề rồi em,anh nghĩ thế,cái cuối phải là :$\frac{b+c}{b+a}$


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Neverland 
---=--Sơn--=--- (28-05-2014)
  #4  
Cũ 28-05-2014, 12:07
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Quản Lý Chuyên Mục
Đến từ: TK12NBK
Nghề nghiệp: Học sinh
Sở thích: TPT
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 577
Điểm: 235 / 6216
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Mặc định Re: Cho x, y, z dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{c+b}{c+b}$

Nguyên văn bởi Runaway Xem bài viết
Sai đề rồi em,anh nghĩ thế,cái cuối phải là :$\frac{b+c}{b+a}$
Dạ, cảm ơn anh, em sửa đề rồi nghe



Báo cáo bài viết xấu Trả lời với trích dẫn
  #5  
Cũ 28-05-2014, 12:17
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 5012
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Cho x, y, z dương. Chứng minh: $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{c+a}{c+b}+\frac{a+b}{a+c}+\frac{c+b}{c+b}$

Một cách giải tổng quát hơnnếu như đề sửa)
BĐT$\Leftrightarrow \sum (\frac{a}{b}-\frac{a+c}{b+c})\geq 0
\Leftrightarrow \sum \frac{c(a-b)}{b(b+c)}\geq 0$
Đặt $\frac{\frac{a}{b}+1}{2}=X;\frac{\frac{b}{c}+1}{2} =Y;\frac{\frac{c}{a}+1}{2}=Z$
Không quá khó khăn,bằng AM-GM,chứng minh được:$XYZ\geq 1$
BĐT$\Leftrightarrow \frac{X-1}{Y}+\frac{Y-1}{Z}+\frac{Z-1}{X}\geq 0
\Leftrightarrow \frac{X}{Y}+\frac{Y}{Z}+\frac{Z}{X}\geq \frac{1}{X}+\frac{1}{Y}+\frac{1}{Z}$ (1)
Áp dụng BĐT AM-GM:
$\sum (\frac{X}{Y}+\frac{Y}{Z}+\frac{Y}{Z})\geq \sum 3\sqrt[3]{\frac{xy}{z^{2}}}=\sum 3\sqrt[3]{\frac{xyz}{z^{3}}}\geq \sum 3\sqrt[3]{\frac{1}{z^{3}}}=\sum \frac{3}{z}$
$\Leftrightarrow (1)$ suy ra ĐPCM

Bài toán tổng quát giải tương tự cách trên:
$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+kc}{b+kc}+\frac{b+ka}{c+ka}+\frac{c+kb}{a+ kb}$
Thử giải em nha,hay lắm đó


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Neverland 
---=--Sơn--=--- (28-05-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Chủ đề mới nhất trong chuyên mục

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho a,b, c là số dương , chứng minh BĐT minhtuvm Bất đẳng thức - Cực trị 0 18-05-2016 13:55
SPHN lần 3;Với các số thục dương $x,y$. Chứng minh bất đẳng thức: $\frac{1}{x+y+1}-\frac{1}{\left( x+1 \right)\left( y+1 \right)}<\frac{1}{11}$ catbuilata Bất đẳng thức - Cực trị 0 21-04-2016 13:13
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014