Câu BĐT đề thi thử nguoithay.vn Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM: $(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 09-05-2014, 16:23
Avatar của yduoc
yduoc yduoc đang ẩn
Thành viên Chính thức
 
Cấp bậc: 5 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 104
Điểm: 13 / 1294
Kinh nghiệm: 19%

Thành viên thứ: 16399
 
Tham gia ngày: Sep 2013
Bài gửi: 41
Đã cảm ơn : 19
Được cảm ơn 2 lần trong 2 bài viết

Lượt xem bài này: 595
Mặc định Câu BĐT đề thi thử nguoithay.vn Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM: $(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$

Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM:
$(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 01-06-2014, 14:12
Avatar của HongAn39
HongAn39 HongAn39 đang ẩn
$\Huge{\mathcal{HongAn}}$
Đến từ: TP HCM
Nghề nghiệp: Sinh Viên
 
Cấp bậc: 11 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 259
Điểm: 50 / 2893
Kinh nghiệm: 38%

Thành viên thứ: 20204
 
Tham gia ngày: Feb 2014
Bài gửi: 152
Đã cảm ơn : 68
Được cảm ơn 301 lần trong 117 bài viết

Mặc định Re: Câu BĐT đề thi thử nguoithay.vn Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM: $(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$

Nguyên văn bởi yduoc Xem bài viết
Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM:
$(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$
Click the image to open in full size.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  HongAn39 
---=--Sơn--=--- (01-06-2014)
  #3  
Cũ 01-06-2014, 17:47
Avatar của Ngọc Anh
Ngọc Anh Ngọc Anh đang ẩn
๖ۣۜGió
Đến từ: Thanh Hoá
Nghề nghiệp: Học sinh
Sở thích: Toán, Lý
 
Cấp bậc: 17 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 403
Điểm: 112 / 4734
Kinh nghiệm: 14%

Thành viên thứ: 17755
 
Tham gia ngày: Dec 2013
Bài gửi: 337
Đã cảm ơn : 176
Được cảm ơn 631 lần trong 227 bài viết

Mặc định Re: Câu BĐT đề thi thử nguoithay.vn Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM: $(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$

Nguyên văn bởi yduoc Xem bài viết
Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM:
$(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$
Ta có: \[\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) \le {\left( {xy - 1} \right)^2} \Rightarrow \left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right)\left( {{z^2} - 1} \right) \le \left( {xy - 1} \right)\left( {yz - 1} \right)\left( {zx - 1} \right)\]
Mà: \[\left( {xy - 1} \right)\left( {yz - 1} \right) = x{y^2}z - xy - yz + 1 = y\left( {x + y + z} \right) - xy - yz + 1 = {y^2} + 1\]
Tử đây suy ra dpcm.


Thời gian của bạn là hữu hạn, vì thế đừng lãng phí nó để sống cuộc đời người khác


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Ngọc Anh 
---=--Sơn--=--- (01-06-2014)
  #4  
Cũ 01-06-2014, 18:05
Avatar của ---=--Sơn--=---
---=--Sơn--=--- ---=--Sơn--=--- đang ẩn
Quản Lý Chuyên Mục
Đến từ: TK12NBK
Nghề nghiệp: Học sinh
Sở thích: TPT
 
Cấp bậc: 24 [♥ Bé-Yêu ♥]
Hoạt động: 57 / 577
Điểm: 235 / 6235
Kinh nghiệm: 10%

Thành viên thứ: 23716
 
Tham gia ngày: Apr 2014
Bài gửi: 705
Đã cảm ơn : 450
Được cảm ơn 311 lần trong 241 bài viết

Mặc định Re: Câu BĐT đề thi thử nguoithay.vn Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz. CM: $(x^{2}-1)(y^{2}-1)(z^{2}-1)\leq \sqrt{(x^{2}+1)(y^{2}+1)(z^{2}+1)}$

Nguyên văn bởi Ngọc Anh Xem bài viết
Ta có: \[\left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right) \le {\left( {xy - 1} \right)^2} \Rightarrow \left( {{x^2} - 1} \right)\left( {{y^2} - 1} \right)\left( {{z^2} - 1} \right) \le \left( {xy - 1} \right)\left( {yz - 1} \right)\left( {zx - 1} \right)\]
Mà: \[\left( {xy - 1} \right)\left( {yz - 1} \right) = x{y^2}z - xy - yz + 1 = y\left( {x + y + z} \right) - xy - yz + 1 = {y^2} + 1\]
Tử đây suy ra dpcm.
Nếu 2 trong 3 số$(x^2-1); (y^2-1); (z^2-1)$ âm thì em thấy cách này không ổn, mong anh giải thích luôn



Báo cáo bài viết xấu Trả lời với trích dẫn
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014