Đề thi thử đại học lần 1 -HĐK - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi THPT Quốc Gia giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi thử Đại học | Website khác

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 09-05-2014, 04:04
Avatar của thanh phong
thanh phong thanh phong đang ẩn
Quản Lý Chuyên Mục
Đến từ: Mỹ Đức- Hà Nội
Nghề nghiệp: SV
Sở thích: Sáng tạo toán
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 320
Điểm: 73 / 4606
Kinh nghiệm: 82%

Thành viên thứ: 3147
 
Tham gia ngày: Jan 2013
Bài gửi: 219
Đã cảm ơn : 212
Được cảm ơn 184 lần trong 104 bài viết

Lượt xem bài này: 868
Mặc định Đề thi thử đại học lần 1 -HĐK

Bạn có thể tải file đính kèm mà không cần phải ĐĂNG KÝ THÀNH VIÊN

Kiểu file: pdf 01.pdf‎ (125,1 KB, 228 lượt tải )


SÁNG TẠO TRONG ĐAM MÊ


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 09-05-2014, 09:27
Avatar của Quốc Thắng
Quốc Thắng Quốc Thắng đang ẩn
materazzi
Đến từ: TP. HCM
Nghề nghiệp: Xe ôm
 
Cấp bậc: 10 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 232
Điểm: 42 / 2548
Kinh nghiệm: 31%

Thành viên thứ: 22030
 
Tham gia ngày: Mar 2014
Bài gửi: 127
Đã cảm ơn : 74
Được cảm ơn 244 lần trong 91 bài viết

Mặc định Re: Đề thi thử đại học lần 1 -HĐK

Câu 6. Cho các số thực dương $ \displaystyle x,y,z $ thỏa $ \displaystyle x+y+z=1 $. Tìm giá trị nhỏ nhất của biểu thức
$$ P=\frac{1}{27xyz}+\frac{2014}{x^2+y^2+z^2+18xyz} $$
Giải. Ta thấy
$$ x^2+y^2+z^2=\left( x+y+z \right)^2-2 \left(xy+yz+zx \right)=1-2 \left( xy+yz+zx \right) $$
Từ bất đẳng thức quen biết
$$ \left( xy+yz+zx \right)^2 \ge 3xyz \left( x+y+z \right)=3 xyz $$
Suy ra
$$ x^2+y^2+z^2 \le 1 -2\sqrt{3xyz} $$
Đặt $ \displaystyle t=\sqrt{3xyz} >0 $, từ giả thiết có
$$ 1=x+y+z \ge 3\sqrt[3]{xyz} $$
Suy ra
$$ \frac{1}{3} \ge t > 0 $$
Ta có
$$ P \ge \frac{1}{9t^2}+\frac{2014}{6t^2-2t+1}=2015+\frac{\left( 1-3t\right) \left( 36270t^3+t+1 \right)}{9t^2 \left( 6t^2-2t+1 \right)} \ge 2015 $$
Tại $ \displaystyle x=y=z=\frac{1}{3} $ thì $ \displaystyle P=2015 $.

Vậy
$$ \min \ P=2015 $$


Con về chẳng thấy mẹ đâu
Nắng vàng mẹ chẳng gội đầu bên sân
Ngoài kia hoa nở thật gần
Ngó vào khe cửa thì thầm: Mẹ ơi!…


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 4 người đã cảm ơn cho bài viết này
Nhữ Phong (09-05-2014), g2012 (09-05-2014), Đình Nam (27-05-2014), Đặng Thành Nam (09-05-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014