Giả sử $f\left(x \right)$ liên tục trên R và $f\left(f\left(x \right) \right)=x $ với mọi $x\in R$. Chứng minh rằng $\ni x_{0}\in R$ sao cho $f\left(x_{0} \right)=x_{0}.$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan CHƯƠNG TRÌNH MÔN TOÁN TRUNG HỌC giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chương trình Toán lớp 11 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số & Giải tích 11 giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Giới hạn hàm số - Giới hạn dãy số

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 04-04-2014, 06:23
Avatar của nguyenthach
nguyenthach nguyenthach đang ẩn
Thành viên Chính thức
 
Cấp bậc: 2 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 46
Điểm: 5 / 691
Kinh nghiệm: 86%

Thành viên thứ: 1279
 
Tham gia ngày: Nov 2012
Bài gửi: 17
Đã cảm ơn : 4
Đã được cảm ơn 1 lần trong 1 bài viết

Lượt xem bài này: 442
Mặc định Giả sử $f\left(x \right)$ liên tục trên R và $f\left(f\left(x \right) \right)=x $ với mọi $x\in R$. Chứng minh rằng $\ni x_{0}\in R$ sao cho $f\left(x_{0} \right)=x_{0}.$

Giả sử $f\left(x \right)$ liên tục trên R và $f\left(f\left(x \right) \right)=x $ với mọi $x\in R$. Chứng minh rằng $\ni x_{0}\in R$ sao cho $f\left(x_{0} \right)=x_{0}.$


Chủ đề được quan tâm nhiều nhất:



Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 04-04-2014, 21:58
Avatar của ma29
ma29 ma29 đang ẩn
songoku
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 458
Điểm: 144 / 6067
Kinh nghiệm: 34%

Thành viên thứ: 13065
 
Tham gia ngày: Jun 2013
Bài gửi: 434
Đã cảm ơn : 202
Được cảm ơn 279 lần trong 119 bài viết

Mặc định Re: Bài toán sử dụng tính liên tục khó cần giúp đỡ.

Nguyên văn bởi nguyenthach Xem bài viết
Giả sử $f\left(x \right)$ liên tục trên R và $f\left(f\left(x \right) \right)=x $ với mọi $x\in R$. Chứng minh rằng $\ni x_{0}\in R$ sao cho $f\left(x_{0} \right)=x_{0}.$
Bài toán này có thể hiểu như giả sử $f(x)>x\Rightarrow f(f(x))>f(x)\Rightarrow x>f(x)$ ngược lại $f(x)<x$ thì cũng vậy (vô lý ) nên suy ra có $x_0$ để cho $f(x_0)=x_0$


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 04-04-2014, 23:47
Avatar của Nôbita
Nôbita Nôbita đang online
Quản Lý Diễn Đàn
Đến từ: Hồ Chí Minh
Nghề nghiệp: Tập sự
Sở thích: Toán học
 
Cấp bậc: 12 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 281
Điểm: 58 / 4156
Kinh nghiệm: 24%

Thành viên thứ: 1430
 
Tham gia ngày: Nov 2012
Bài gửi: 174
Đã cảm ơn : 40
Được cảm ơn 191 lần trong 100 bài viết

Mặc định Re: Bài toán sử dụng tính liên tục khó cần giúp đỡ.

Nguyên văn bởi ma29 Xem bài viết
Bài toán này có thể hiểu như giả sử $f(x)>x\Rightarrow f(f(x))>f(x)\Rightarrow x>f(x)$ ngược lại $f(x)<x$ thì cũng vậy (vô lý ) nên suy ra có $x_0$ để cho $f(x_0)=x_0$
Có chắc là $f$ tăng hay giảm thực sự không bạn?


"Hãy lấp lánh ngày hôm nay và ngày mai bạn sẽ tỏa sáng."


Báo cáo bài viết xấu Trả lời với trích dẫn
  #4  
Cũ 04-04-2014, 23:51
Avatar của ma29
ma29 ma29 đang ẩn
songoku
 
Cấp bậc: 19 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 458
Điểm: 144 / 6067
Kinh nghiệm: 34%

Thành viên thứ: 13065
 
Tham gia ngày: Jun 2013
Bài gửi: 434
Đã cảm ơn : 202
Được cảm ơn 279 lần trong 119 bài viết

Mặc định Re: Bài toán sử dụng tính liên tục khó cần giúp đỡ.

Nguyên văn bởi Nôbita Xem bài viết
Có chắc là $f$ tăng hay giảm thực sự không bạn?
Đơn giản hàm liên tục cho nên được quyền lấy $f$ hai vế thôi bạn.


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  ma29 
Nôbita (05-04-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:


Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014