Đề Thi Đề học sinh giỏi cấp trường Năm học 2013-2014 - Trang 2
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan TOÁN OLYMPIC - HỌC SINH GIỎI giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan ĐỀ THI HỌC SINH GIỎI MÔN TOÁN giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đề thi HSG Toán 11


 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị
 
Cũ 16-02-2014, 13:09
Avatar của quynhanhbaby
quynhanhbaby quynhanhbaby đang ẩn
Cộng Tác Viên
Đến từ: Thanh Chương-Nghệ An
Nghề nghiệp: Giáo viên
 
Cấp bậc: 8 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 194
Điểm: 32 / 3599
Kinh nghiệm: 78%

Thành viên thứ: 54
 
Tham gia ngày: Jan 2012
Bài gửi: 96
Đã cảm ơn : 80
Được cảm ơn 156 lần trong 63 bài viết

Mặc định Đề học sinh giỏi cấp trường Năm học 2013-2014

Mời mọi người thảo luận


Bạn có thể tải file đính kèm mà không cần phải ĐĂNG KÝ THÀNH VIÊN

Kiểu file: pdf de thi hsg truong khoi 11 nam 2013-2014 (1).pdf‎ (300,3 KB, 489 lượt tải )


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 7 người đã cảm ơn cho bài viết này
Hà Nguyễn (16-02-2014), Hồng Sơn-cht (16-02-2014), maixuanhang (18-02-2014), Missyou12aBG (16-02-2014), pdnhatna1998 (16-02-2014), Phạm Kim Chung (16-02-2014), sang_zz (03-03-2015)
  #5  
Cũ 16-02-2014, 15:13
Avatar của Hà Nguyễn
Hà Nguyễn Hà Nguyễn đang ẩn
Những Đêm Lặng Câm :)
 
Cấp bậc: 23 [♥ Bé-Yêu ♥]
Hoạt động: 0 / 563
Điểm: 223 / 9236
Kinh nghiệm: 55%

Thành viên thứ: 858
 
Tham gia ngày: Oct 2012
Bài gửi: 669
Đã cảm ơn : 3.234
Được cảm ơn 1.352 lần trong 441 bài viết

Mặc định Re: Đề học sinh giỏi cấp trường Năm học 2013-2014

Câu 1 :

Hướng Dẫn :

Đặt $x=\cos 2t$ đk $2t\in \left[0;\Pi \right]$

PT $\Leftrightarrow \sqrt{2}\sin t-\cos 4t=\sin 4t$

$\Rightarrow \sqrt{2}\sin \left(4t+\frac{\Pi }{4} \right)=\sqrt{2}\sin t$


Không đủ đẹp để ai cũng phải yêu
Không đủ cao để nổi bật giữa mọi người
Chẳng đủ ngọt ngào làm siêu lòng người khác
Nhưng đủ tự tin để yêu bằng trái tim !. :)


Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Hà Nguyễn 
Nguyễn Thế Duy (16-02-2014)
  #6  
Cũ 16-02-2014, 15:31
Avatar của Neverland
Neverland Neverland đang ẩn
RunAway-Dsfaster =D
Đến từ: Nghệ An
Nghề nghiệp: Living in my life
Sở thích: My Life
 
Cấp bậc: 18 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 443
Điểm: 135 / 5592
Kinh nghiệm: 72%

Thành viên thứ: 19217
 
Tham gia ngày: Jan 2014
Bài gửi: 405
Đã cảm ơn : 180
Được cảm ơn 207 lần trong 132 bài viết

Mặc định Re: Đề học sinh giỏi cấp trường Năm học 2013-2014

Em chém câu BĐT nha;
$x^{2}+y^{2}=4\Rightarrow (x-1)^{2}+(y-7)^{2}=54-2x-14y
\Rightarrow P=\sqrt{(x-1)^{2}+y^{2}}+\sqrt{(x-1)^{2}+(y-7)^{2}}\geq \mid x+y-7\mid +\mid x+y-1\mid \geq 6 $ (đoạn này chính là ta áp dụng BĐT minkowsky)
dấu bằng xảy ra khi x=1,y=3


Đã đến lúc phải từ bỏ lối chờ đợi những quà tặng bất ngờ của cuộc sống mà phải tự mình làm ra cuộc sống
-Lev Tolstoi-

Các bạn đang xem video trên www.K2pi.Net.Vn


Báo cáo bài viết xấu Trả lời với trích dẫn
  #7  
Cũ 16-02-2014, 18:53
Avatar của Trọng Nhạc
Trọng Nhạc Trọng Nhạc đang ẩn
Quản Lý Diễn Đàn
Đến từ: Cà Mau
Nghề nghiệp: thợ toán
Sở thích: yên lặng
 
Cấp bậc: 26 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 643
Điểm: 298 / 9545
Kinh nghiệm: 73%

Thành viên thứ: 9728
 
Tham gia ngày: Apr 2013
Bài gửi: 896
Đã cảm ơn : 972
Được cảm ơn 898 lần trong 485 bài viết

Mặc định Re: Đề học sinh giỏi cấp trường Năm học 2013-2014

Câu 3.1

Phải chứng minh :$ JG=2GI, H $là trung điểm $JD$
Từ đó tính trực tâm J và D suy ra các điểm cần tìm
Goi Toạ độ tâm I(a;b) của đường tròn ngoại tiếp tam giác ABC
$$\left(C \right):\left(x-a \right)^{2}+\left(y-b \right)^{2}=10$$
từ điều trên $\overrightarrow {JG}=2\overrightarrow{GI}\Rightarrow J\left(-2a+11;-2b+7 \right)\Rightarrow D\left(2a-3;2b+1 \right)$
Gọi $E$ là giao điểm của $BK$ với $(C)$ ta cũng có $E(2a-5;2b-5)$
thay toạ độ của$ D,E$ vào phương trình đường tròn:
$$\left\{\begin{matrix}
\left(a-5 \right)^{2}+\left(b-5 \right)^{2}=10 & \\ \left(a-3 \right)^{2}+\left(b+1 \right)^{2}=10
&
\end{matrix}\right.\iff\left\{\begin{matrix}
a=4 & \\ b=2
&
\end{matrix}\right.$$
$J(3;3)$ phương trình AH: x-y=0 kết hợp với phương trình $(C)$ ta suy ra $A(1;1)$
Phương trình $BC: x+y-8=0$ với phương trình $(C)$ và không kể vị trí ta có $B(5,3),C(7;1)$

P/S Đây là bài toán quen thuộc
còn xa lạ nữa không bạn.




Báo cáo bài viết xấu Trả lời với trích dẫn
Các thành viên sau đã cảm ơn bài viết của  Trọng Nhạc 
Mai Tuấn Long (17-02-2014)
  #8  
Cũ 16-02-2014, 19:29
Avatar của Mai Tuấn Long
Mai Tuấn Long Mai Tuấn Long đang ẩn
Cộng Tác Viên
Đến từ: Mỹ Đức- HN
 
Cấp bậc: 27 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 651
Điểm: 307 / 10219
Kinh nghiệm: 5%

Thành viên thứ: 2893
 
Tham gia ngày: Jan 2013
Bài gửi: 922
Đã cảm ơn : 795
Được cảm ơn 1.455 lần trong 649 bài viết

Mặc định Re: Đề học sinh giỏi cấp trường Năm học 2013-2014

Nguyên văn bởi Trọng Nhạc Xem bài viết
Câu 3.1

Phải chứng minh :$ JG=2GI, H $là trung điểm $JD$
Từ đó tính trực tâm J và D suy ra các điểm cần tìm
P/S Đây là bài toán quen thuộc
Cái quen của thầy là xa lạ với bài toán này mất rồi !


Để gió cuốn đi


Báo cáo bài viết xấu Trả lời với trích dẫn
Có 3 người đã cảm ơn cho bài viết này
Hà Nguyễn (16-02-2014), Huy Vinh (16-02-2014), Trọng Nhạc (16-02-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
Có thể bạn quan tâm

LIÊN HỆ
Email:
p.kimchung@gmail.com

Tel: 0984.333.030

giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Giải chi tiết câu 8-9-10 trong đề thi thử THPT Quốc Gia của các trường THPT năm 2016 Phạm Kim Chung Đề thi THPT Quốc Gia năm 2017 18 09-06-2016 17:15
Bộ Giáo dục thay đổi phương thức xét tuyển đại học, cao đẳng FOR U Tin tức Giáo dục 24h 0 13-05-2016 09:47
đề học sinh giỏi 10 đồng nai- 2015-2016 dangminh Đề thi HSG Toán 12 1 07-05-2016 23:30
Bài tìm min,max hay (Trong đề học sinh giỏi 10 ) . dangminh Đạo hàm - Hàm số 1 07-05-2016 18:35



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014