Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$ - Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TRANG CHỦ giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12TÀI LIỆU TRẮC NGHIỆM giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 ĐỀ THI THPT QUỐC GIA giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 GIẢI TOÁN ONLINE giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12 Upload-File giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12ĐĂNG KÍ THÀNH VIÊN
 
giải toán online, giải bài toán, giải toán, cách giải bài toán, giải toán 10, đáp án môn toán, đề thi thử môn toán, luyen thi toan, tài liệu ôn thi đại học, boi duong hoc sinh gioi, boi duong hsg, de thi vao lop 10, toán lớp 10, toán lớp 11, toán lớp 12   Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan GIẢI BÀI TẬP TOÁN ONLINE giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Đại số luyện thi Đại học giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Bất đẳng thức - Cực trị

Trả lờiGui De Tai Moi
 
Công cụ bài viết Tìm trong chủ đề này Kiểu hiển thị

  #1  
Cũ 27-01-2014, 21:12
Avatar của trangthao
trangthao trangthao đang ẩn
Thành viên Chính thức
Đến từ: CLA
Nghề nghiệp: Học sinh
Sở thích: ngủ
 
Cấp bậc: 11 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 261
Điểm: 51 / 3490
Kinh nghiệm: 46%

Thành viên thứ: 11634
 
Tham gia ngày: May 2013
Bài gửi: 154
Đã cảm ơn : 64
Được cảm ơn 13 lần trong 13 bài viết

Lượt xem bài này: 435
Mặc định Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$

Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$. Tìm giá trị nhỏ nhất của biểu thức $\frac{a^{3}}{bc}+\frac{b^{3}}{ca}+\frac{c^{3}}{ab }+\frac{a}{b^{2}}+\frac{b}{c^{2}}+\frac{c}{a^{2}}$


Chủ đề được quan tâm nhiều nhất:



5ting!


Báo cáo bài viết xấu Trả lời với trích dẫn
  #2  
Cũ 27-01-2014, 21:15
Avatar của khanhsy
khanhsy khanhsy đang ẩn
Quản Lý Diễn Đàn
 
Cấp bậc: 13 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 323
Điểm: 74 / 4037
Kinh nghiệm: 94%

Thành viên thứ: 16240
 
Tham gia ngày: Sep 2013
Bài gửi: 223
Đã cảm ơn : 63
Được cảm ơn 310 lần trong 144 bài viết

Mặc định Re: Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$

Nguyên văn bởi trangthao Xem bài viết
Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$. Tìm giá trị nhỏ nhất của biểu thức $a^{2}+b^{2}+ab+\frac{1}{a^{3}}+\frac{1}{b^{3}}$
Con $c$ đứng chơ vơ kề


ÁC TÀI LÀ ĐỘC KHÍ CỦA QUỐC GIA


Báo cáo bài viết xấu Trả lời với trích dẫn
  #3  
Cũ 28-01-2014, 15:48
Avatar của Tuấn Anh Eagles
Tuấn Anh Eagles Tuấn Anh Eagles đang ẩn
Ma Băng Long
Sở thích: NGỦ
 
Cấp bậc: 23 [♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥♥ Bé-Yêu ♥]
Hoạt động: 0 / 556
Điểm: 216 / 7823
Kinh nghiệm: 25%

Thành viên thứ: 4712
 
Tham gia ngày: Feb 2013
Bài gửi: 650
Đã cảm ơn : 1.858
Được cảm ơn 985 lần trong 423 bài viết

Mặc định Re: Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$

Nguyên văn bởi trangthao Xem bài viết
Cho a,b,c là các số thực dương thỏa mãn $a+b+c\leq \frac{3}{2}$. Tìm giá trị nhỏ nhất của biểu thức $\frac{a^{3}}{bc}+\frac{b^{3}}{ca}+\frac{c^{3}}{ab }+\frac{a}{b^{2}}+\frac{b}{c^{2}}+\frac{c}{a^{2}}$
Theo Cauchy-Schwarz ta có 2 hệ quả sau:
\[ \frac{a^{3}}{bc}+\frac{b^{3}}{ca}+\frac{c^{3}}{ab} \ge \sum a \]
\[ \frac{a}{b^{2}}+\frac{b}{c^{2}}+\frac{c}{a^{2}} \ge \sum \dfrac{1}{a} \ge \dfrac{9}{\sum a} \]
Theo AM_GM thì: \[ \sum a+ \dfrac{9}{\sum a} \ge 6 \]

P/s: Lâu lắm rồi mới lại giải bài trên diễn đàn (:



Báo cáo bài viết xấu Trả lời với trích dẫn
Có 2 người đã cảm ơn cho bài viết này
Nhữ Phong (28-01-2014), neymar11 (28-02-2014)
Trả lờiG?i Ð? Tài M?i Thích và chia sẻ bài viết này:
giai toan, de thi trac nghiem, tai lieu mon toan, de thi thpt quoc gia, luyen thi dai hoc, hoc sinh gioi mon toan Chủ đề tương tự
Chủ đề Người khởi xướng chủ đề Diễn đàn Trả lời Bài cuối
Cho các số thực dương $a, b, c$. Tìm GTNN của biểu thức. khanhtoanlihoa Bất đẳng thức - Cực trị 1 16-05-2016 13:10
Olympic Chuyên KHTN 8/5/016 a,b,c >0 thỏa ab+bc+ca+3abc=1.Chứng minh: Trọng Nhạc Bất đẳng thức - Cực trị 2 10-05-2016 14:22
Cho hai số thực dương x, y thỏa mãn điều $(\sqrt x + 1)\sqrt y + 1) \ge 4$ xuanvy2005 Bất đẳng thức - Cực trị 1 25-04-2016 18:18
Cho a , b và c là các số thực dương và thỏa mãn :${b^2} > ac$. Chứng minh rằng :$$a{(a - b)^4} + 4a{b^2} + c > 2b({a^2} + {b^2})$$ hoangphilongpro Bất đẳng thức - Cực trị 0 21-04-2016 11:41
Chứng minh rằng: $\sqrt{a+\frac{(b-c)^{2}}{4}}+\sqrt{b+\frac{(c-a)^{2}}{4}}+\sqrt{c+\frac{(a-b)^{2}}{4}}\leq 2$ Dsfaster134 Bất đẳng thức - Cực trị 4 23-02-2015 18:40



Đang xem bài viết : 1 (0 thành viên và 1 khách)
 

Công cụ bài viết Tìm trong chủ đề này
Tìm trong chủ đề này:

Tìm chi tiết
Kiểu hiển thị

Quyền viết bài
Bạn không thể gửi chủ đề mới
Bạn không thể gửi trả lời
Bạn không thể gửi file đính kèm
Bạn không thể sửa bài viết của mình

BB code đang Mở
Mặt cười đang Mở
[IMG] đang Mở
HTML đang Tắt



DIỄN ĐÀN K2PI.NET.VN | THÁNG 12.2011
Giải toán Online | Đề thi Toán | Luyện thi Toán | Tài liệu môn Toán
Thay đổi tên miền K2pi.Net thành K2pi.Net.Vn từ ngày 01-10-2014